Background: In our previous study, Citrobacter sp. XT1-2-2 was isolated from high cadmium-contaminated soils, and demonstrated an excellent ability to decrease the bioavailability of cadmium in the soil and inhibit cadmium uptake in rice. In addition, the strain XT1-2-2 could significantly promote rice growth and increase rice biomass.
View Article and Find Full Text PDFMicrobial remediation is a promising technique to remediate heavy metals contaminated soils. In this study, the cadmium (Cd)- resistant Citrobacter sp. XT1-2-2, isolated from heavy metals contaminated paddy soils, was investigated to evaluate the effect of this strain on soil Cd speciation, cellular Cd distribution, tissue Cd accumulation and rice biomass.
View Article and Find Full Text PDFThis study assessed the effectiveness of limestone-montmorillonite-rapeseed residue-Si fertilizer compound amendment on the bioavailability and crop uptake of cadmium (Cd) and enzyme activities in acidic paddy soils. Applying the compound amendment at ratios of 1%-3% increased soil pH by 0.1-1.
View Article and Find Full Text PDF