Despite the great research interest in two-dimensional metal nanowire networks (2D MNWNs) due to their large specific surface area and abundance of unsaturated coordination atoms, their controllable synthesis still remains a significant challenge. Herein, a microfluidics laminar flow-based approach is developed, enabling the facile preparation of large-scale 2D structures with diverse alloy compositions, such as PtBi, AuBi, PdBi, PtPdBi, and PtAuCu alloys. Remarkably, these 2D MNWNs can reach sizes up to submillimeter scale (~220 μm), which is significantly larger than the evolution from the 1D or 3D counterparts that typically measure only tens of nanometers.
View Article and Find Full Text PDFThe nucleation stage plays a decisive role in determining nanocrystal morphology and properties; hence, the ability to regulate nucleation is critical for achieving high-level control. Herein, glass microfluidic chips with S-shaped mixing units are designed for the synthesis of Au@Pt core/shell materials. The use of hydrodynamics to tune the nucleation kinetics is explored by varying the number of mixing units.
View Article and Find Full Text PDFNitric oxide (NO), as a vital signaling molecule related to different physiological and pathological processes in living systems, is closely associated with cancer and cardiovascular disease. However, the detection of NO in real-time remains a difficulty. Here, PtBi alloy nanoparticles (NPs) were synthesized, dealloyed, and then fabricated to NP-based electrodes for the electrochemical detection of NO.
View Article and Find Full Text PDFThe accumulation and spatial distribution of intracellular nanoplastic particles provide useful information about their spatiotemporal toxicological effects mediated by the physicochemical parameters of nanoplastics in living cells. In this study, a sample injection-transfer method was designed with an accuracy of up to femtoliters to attoliters to match the volume required for ultranarrow-bore open-tubular liquid chromatography. The separation and concentration quantification of mixed polystyrenes in different regions in living cells were achieved by directly transferring picoliter/femtoliter volumes of intracellular cytoplasm to an ultranarrow-bore open-tubular chromatographic column.
View Article and Find Full Text PDFNoble metal nanoporous materials hold great potential in the field of catalysis, owing to their high open structures and numerous low coordination surface sites. However, the formation of porous nanoparticles is restricted by particle size. Herein, we utilized a PtBi intermetallic nanocatalyst to develop a dealloying approach for preparing nanoparticles with a bi-continuous porous and core-shell structure and proposed a mechanism for the formation of pores.
View Article and Find Full Text PDFEliminating clogging in capillary tube reactors is critical but challenging for enabling continuous-flow microfluidic synthesis of nanoparticles. Creating immiscible segments in a microfluidic flow is a promising approach to maintaining a continuous flow in the microfluidic channel because the segments with low surface energy do not adsorb onto the internal wall of the microchannel. Herein we report the spontaneous self-agglomeration of reduced graphene oxide (rGO) nanosheets in polyol flow, which arises because the reduction of graphene oxide (GO) nanosheets by hot polyol changes the nanosheets from hydrophilic to hydrophobic.
View Article and Find Full Text PDFAn inorganic-framework molecularly imprinted NiAl layered double hydroxide (MI-NiAl-LDH) with specific template molecule (glyphosate pesticide, Glyp) recognition ability was prepared on Ni nanorod arrays (Ni NRAs) through electrodeposition followed by a low-temperature O plasma treatment. The freestanding Ni/MI-NiAl-LDH NRA electrode had highly enhanced sensitivity and selectivity. The electrocatalytic oxidation of Glyp was proposed to occur at Ni centers in MI-NiAl-LDH, and the current response depended linearly on the Glyp concentration from 10.
View Article and Find Full Text PDFCadmium (Cd) is one of the most prevalent toxic metal pollutants, which is widely distributed in various environmental media and organisms. Literature studies have documented that Cd could stimulate cellular oxidative stress, and the increased intracellular reactive oxygen species (ROS) might destroy certain proteins and DNA and subsequently lead to cell apoptosis. Although several studies have studied the co-exposure between cadmium and other metals, information on the potential effects of Cd and its counterions is still lacking.
View Article and Find Full Text PDFThe study of drug-protein interactions can reveal the corresponding binding mechanisms, providing valuable information for the early phase drug development and development of new drugs. This article reviews the methods used for obtaining the binding parameters of drug-protein systems. The methods include equilibrium dialysis, high-performance affinity chromatography, capillary electrophoresis, spectroscopy, calorimetry, competition and displacement, mass spectrometry, fluorescence resonance energy transfer, and thermal stability shift analysis.
View Article and Find Full Text PDFThe development of new synthetic methods for methanol-tolerant catalysts with improved performance is of fundamental importance for the commercialization of fuel cells. Herein, we reported a facile displacement reaction-assisted synthesis of graphene-supported sub-nanometer Pt/Bi catalysts (Pt/Bi/rGO). Bismuth (0) nanoparticles produced by NHBH reduction can be further dissolved into the ethylene glycol, implying Bi(0) has a strong interaction with the hydroxyl group.
View Article and Find Full Text PDFPlastic waste in the environment is continuously degraded to form nanoplastic particles, and its harm has attracted widespread attention. At present, the identification and quantification of nanoplastics are performed by visual observation and using some spectroscopy methods, which are time-consuming and lack accuracy. Therefore, this study proposes a contactless conductivity detector (CD) based on a glass microfluidic chip with controllable geometric parameters to quantify nanoplastics.
View Article and Find Full Text PDFHydrodynamic chromatography (HDC) is a technique originally developed for separating particles. We have recently extended it to DNA fragment sizing and quantitation. In this review, we focus on this extension.
View Article and Find Full Text PDFThe analysis of single living cells, including intracellular delivery and extraction, is essential for monitoring their dynamic biochemical processes and exploring intracellular heterogeneity. However, owing to the 2D view in bright-field microscopy and optical distortions caused by the cell shape and the variation in the refractive index both inside and around the cells, achieving spatially undistorted imaging for high-precision manipulation within a cell is challenging. Here, an accurate and visual system is developed for single-cell spatial manipulation by correcting the aberration for simultaneous bright-field triple-view imaging.
View Article and Find Full Text PDFMicrofluidic synthesis has attracted extensive attention due to the ability for the multistep precise control of the synthesis parameters, continuous and reproducible preparation, and its ease of integration. However, its commercial application is still affected by its low production efficiency. In this case, we report a high-throughput continuous flow synthesis of highly dispersed PtFeCu/C nanocatalysts using a metal microchip setup with four parallel channels.
View Article and Find Full Text PDFPorous layer open tubular capillary columns with a narrow inner diameter (NPLOT) have potential in life science, especially in single-cell analysis. In this work, quinidine-based chiral NPLOT columns were prepared by in-situ thermal-initiated polymerization. The porous layer of the organic polymer was prepared with a 6 μm i.
View Article and Find Full Text PDFA novel sensor based on carbon supported BiSn alloy nanoparticles (BiSn@C) was prepared for the sensitive detection of Cd. The BiSn@C and Nafion modified glassy carbon electrode (GCE) exhibited improved electrochemical performance in Cd detection, because of its large specific surface area, abundance of active sites, good electrical conductivity, and strong cation exchange ability. Under the optimum conditions, the fabricated sensor showed good linearity of its response from 0.
View Article and Find Full Text PDFIn this study, an in-tube solid-phase microextraction column packed with mesoporous TiO nanoparticles, coupled with MALDI-TOF-MS, was applied to the selective enrichment and detection of phosphopeptides in complex biological samples. The mesoporous TiO nanoparticles with high specific surface areas, prepared by a sol-gel and solvothermal method, were injected into the capillary using a slurry packing method with in situ polymerized monolithic segments as frits. Compared with the traditional solid-phase extraction method, the TiO -packed column with an effective length of 1 cm exhibited excellent selectivity (α-casein/β-casein/BSA molar ratio of 1:1:100) and sensitivity (10 fmol of a β-casein enzymatic hydrolysis sample) for the enrichment of phosphopeptides.
View Article and Find Full Text PDFA three-electron structural reaction for NaVO(PO)F (NaVOPF) in space group I4/mmm shows a priori stabilisation in terms of long-life in the voltage range of 2.0-4.5 V, with embedding of more than one sodium ion to generate NaVOPF upon discharge to 1.
View Article and Find Full Text PDFBy selectively promoting heterogeneous nucleation/growth of MoS on graphene monolayer sheets, edge-oriented (EO) MoS nanosheets with expanded interlayer spacing (∼9.4 Å) supported on reduced graphene oxide (rGO) sheets were successfully synthesized through colloidal chemistry, showing the promise in low-cost and large-scale production. The number and edge length of MoS nanosheets per area of graphene sheets were tuned by controlling the reaction time in the microwave-assisted solvothermal reduction of ammonium tetrathiomolybdate [(NH)MoS] in dimethylformamide.
View Article and Find Full Text PDFWe report the in situ investigation of the morphological evolution of silver nanowires to hollow silver oxide nanotubes using transmission X-ray microscopy (TXM). Complex silver diffusion kinetics and hollowing process via the Kirkendall effect have been captured in real time. Further quantitative X-ray absorption analysis reveals the difference between the longitudinal and radial diffusions.
View Article and Find Full Text PDFDeveloping new synthetic methods for carbon supported catalysts with improved performance is of fundamental importance in advancing proton exchange membrane fuel cell (PEMFC) technology. Continuous-flow, microfluidic reactions in capillary tube reactors are described, which are capable of synthesizing surfactant-free, ultrafine PtSn alloyed nanoparticles (NPs) on various carbon supports (for example, commercial carbon black particles, carbon nanotubes, and graphene sheets). The PtSn NPs are highly crystalline with sizes smaller than 2 nm, and they are highly dispersed on the carbon supports with high loadings up to 33 wt%.
View Article and Find Full Text PDFOrdered intermetallic nanomaterials are of considerable interest for fuel cell applications because of their unique electronic and structural properties. The synthesis of intermetallic compounds generally requires the use of high temperatures and multiple-step processes. The development of techniques for rapid phase- and size-controlled synthesis remains a formidable challenge.
View Article and Find Full Text PDFSodium-ion batteries are a very promising alternative to lithium-ion batteries because of their reliance on an abundant supply of sodium salts, environmental benignity, and low cost. However, the low rate capability and poor long-term stability still hinder their practical application. A cathode material, formed of RuO2 -coated Na3 V2 O2 (PO4 )2 F nanowires, has a 50 nm diameter with the space group of I4/mmm.
View Article and Find Full Text PDF