In multi-agent reinforcement learning, the cooperative learning behavior of agents is very important. In the field of heterogeneous multi-agent reinforcement learning, cooperative behavior among different types of agents in a group is pursued. Learning a joint-action set during centralized training is an attractive way to obtain such cooperative behavior; however, this method brings limited learning performance with heterogeneous agents.
View Article and Find Full Text PDFTraining agents via deep reinforcement learning with sparse rewards for robotic control tasks in vast state space are a big challenge, due to the rareness of successful experience. To solve this problem, recent breakthrough methods, the hindsight experience replay (HER) and aggressive rewards to counter bias in HER (ARCHER), use unsuccessful experiences and consider them as successful experiences achieving different goals, for example, hindsight experiences. According to these methods, hindsight experience is used at a fixed sampling rate during training.
View Article and Find Full Text PDFA cooperative cognitive radio scheme exploiting primary signals for energy harvesting is proposed. The relay sensor node denoted as the secondary transmitter (ST) harvests energy from the primary signal transmitted from the primary transmitter, and then uses it to transmit power superposed codes of the secrecy signal of the secondary network (SN) and of the primary signal of the primary network (PN). The harvested energy is split into two parts according to a power splitting ratio, one for decoding the primary signal and the other for charging the battery.
View Article and Find Full Text PDFProvision of energy to wireless sensor networks is crucial for their sustainable operation. Sensor nodes are typically equipped with batteries as their operating energy sources. However, when the sensor nodes are sited in almost inaccessible locations, replacing their batteries incurs high maintenance cost.
View Article and Find Full Text PDFWe present a reduced-phase triple-illumination interferometer (RPTII) as a novel single-shot technique to increase the precision of dual-illumination optical phase unwrapping techniques. The technique employs two measurement ranges to record both low-precision unwrapped and high-precision wrapped phases. To unwrap the high-precision phase, a hierarchical optical phase unwrapping algorithm is used with the low-precision unwrapped phase.
View Article and Find Full Text PDF