Alginate-encapsulated hepatocyte transplantation is a promising strategy to treat liver failure. However, its clinical application was impeded by the lack of primary human hepatocytes and difficulty in controlling their quality. We previously reported proliferating human hepatocytes (ProliHHs).
View Article and Find Full Text PDFBackground: Bone marrow-derived endothelial progenitor cells (EPCs) play a dynamic role in maintaining the structure and function of blood vessels. But how these cells maintain their growth and angiogenic capacity under bone marrow hypoxic niche is still unclear. This study aims to explore the mechanisms from a perspective of cellular metabolism.
View Article and Find Full Text PDFExpansion of bone marrow-derived endothelial progenitor cells (EPCs) in vitro to obtain required cell numbers for therapeutic applications faces the challenge of growing cell senescence under the traditional normoxic culture condition. We previously found that 1% O hypoxic culture condition is favorable for reducing senescence of EPCs, but the mechanisms underlying the favorability are still unclear. Here, we found that, compared with normoxia, hypoxia induced a shift in lactate dehydrogenase (LDH) isozyme profile, which manifested as decreased LDH2 and LDH1 and increased LDH5, LDH4 and total LDHs.
View Article and Find Full Text PDFThe benefits of hypoxia for maintaining the stemness of cultured human bone marrow-derived endothelial progenitor cells (BM EPCs) have previously been demonstrated but the mechanisms responsible remain unclear. Growing evidences suggest that cellular metabolism plays an important role in regulating stem cell fate and self-renewal. Here we aimed to detect the changes of glucose metabolism and to explore its role on maintaining the stemness of BM EPCs under hypoxia.
View Article and Find Full Text PDFThe postoperative thrombus attached to the damaged blood vessels severely obstructs drugs from crossing the damaged blood-brain barrier (BBB) and targeting residual glioma cells around surgical margins, leading to glioblastoma (GBM) recurrence. A thrombus-bypassing, BBB-crossing, and surgical margin-targeted nanodrug is needed to address this phenomenon. Encouraged by the intrinsic damaged vascular endothelium chemotaxis of platelets, a platelet membrane-coated nanodrug (PM-HDOX) delivering doxorubicin (DOX) for postoperative GBM treatment is proposed and systematically investigated.
View Article and Find Full Text PDFPoly(N-isopropylacrylamide) (PNIPAM) is an important thermo-responsive polymer that finds applications in many areas. However, the preparation of PNIPAM-based block copolymer nanoparticles with higher-order morphologies at high solids is challenging. Herein, aqueous photoinitiated polymerization-induced self-assembly (photo-PISA) of N-isopropylacrylamide (NIPAM) using an asymmetrical cross-linker is developed for one-step preparation of PNIPAM-based block copolymer nanoparticles with various morphologies (spheres, worms, and vesicles).
View Article and Find Full Text PDFThis study aims to evaluate current preferences and trends in the delivery of Transcranial Magnetic Stimulation (TMS) for Obsessive-Compulsive Disorder (OCD). A 10-item online questionnaire was developed and conducted online between April to June 2020, surveying providers of TMS for patients with OCD internationally. A total of 27 valid responses were analysed from 10 countries.
View Article and Find Full Text PDF