Publications by authors named "Dongming Sun"

Presently, demonstrates proficient co-fermentation of glucose and xylose, marking a significant advancement in second-generation fuel ethanol production. However, the presence of high concentrations of inhibitors in industrial lignocellulose hydrolysates and post-glucose effect caused by glucose consumption hinders severely impedes yeast robustness and xylose utilization for ethanol fermentation. Even worse, the antagonism between xylose utilization ability and strain robustness was observed, which proposes a difficult challenge in the production of second-generation fuel ethanol by .

View Article and Find Full Text PDF
Article Synopsis
  • Hot-carrier transistors utilize the excess energy of carriers for improved speed and performance, unlike traditional transistors which depend on steady energy levels.
  • They are particularly valuable in high-speed applications like telecommunications and advanced computing but face limitations in power consumption and resistance.
  • This study introduces a new hot-emitter transistor using graphene/germanium junctions that achieves remarkable efficiency and functionality, including a very low subthreshold swing and high inverter gain, indicating potential for future low-power technologies.
View Article and Find Full Text PDF

Cellulosic ethanol is the key technology to alleviate the pressure of energy supply and climate change. However, the ethanol production process, which is close to industrial production and has a high saccharification rate and ethanol yield, still needs to be developed. This study demonstrates the effective conversion of poplar wood waste into fuel-grade ethanol.

View Article and Find Full Text PDF

Vertical three-dimensional integration of two-dimensional (2D) semiconductors holds great promise, as it offers the possibility to scale up logic layers in the z axis. Indeed, vertical complementary field-effect transistors (CFETs) built with such mixed-dimensional heterostructures, as well as hetero-2D layers with different carrier types, have been demonstrated recently. However, so far, the lack of a controllable doping scheme (especially p-doped WSe (refs.

View Article and Find Full Text PDF

Spinal cord injury (SCI) triggers a complex cascade of events, including myelin loss, neuronal damage, neuroinflammation, and the accumulation of damaged cells and debris at the injury site. Infiltrating bone marrow derived macrophages (BMDMϕ) migrate to the epicenter of the SCI lesion, where they engulf cell debris including abundant myelin debris to become pro-inflammatory foamy macrophages (foamy Mϕ), participate neuroinflammation, and facilitate the progression of SCI. This study aimed to elucidate the cellular and molecular mechanisms underlying the functional changes in foamy Mϕ and their potential implications for SCI.

View Article and Find Full Text PDF

Transition metal tellurides (TMTs) have been ideal materials for exploring exotic properties in condensed-matter physics, chemistry and materials science. Although TMT nanosheets have been produced by top-down exfoliation, their scale is below the gram level and requires a long processing time, restricting their effective application from laboratory to market. We report the fast and scalable synthesis of a wide variety of MTe (M = Nb, Mo, W, Ta, Ti) nanosheets by the solid lithiation of bulk MTe within 10 min and their subsequent hydrolysis within seconds.

View Article and Find Full Text PDF

Rats manifest a condition called hemorrhagic cystitis after spinal cord injury (SCI). The mechanism of this condition is unknown, but it is more severe in male rats than in female rats. We assessed the role of sex regarding hemorrhagic cystitis and pathological chronic changes in the bladder.

View Article and Find Full Text PDF

Integrating a graphene transparent electrode (TE) matrix with driving circuits is essential for the practical use of graphene in optoelectronics such as active-matrix organic light-emitting diode (OLED) display, however it is disabled by the transport of carriers between graphene pixels after deposition of a semiconductor functional layer caused by the atomic thickness of graphene. Here, the carrier transport regulation of a graphene TE matrix by using an insulating polyethyleneimine (PEIE) layer is reported. The PEIE forms an ultrathin uniform film (≤10 nm) to fill the gap of the graphene matrix, blocking horizontal electron transport between graphene pixels.

View Article and Find Full Text PDF

Background: Dilated cardiomyopathy type 2A (DCM2A, MIM: #611880) is a rare autosomal recessive heart disease leading to heart failure and sudden cardiac death. However, the causative role of TNNI3 in DCM2A is still questioned due to few cases reported and the conflicting molecular biological evidence.

Methods: Trio whole-exome sequencing (trio-WES) was performed in a Chinese family with dilated cardiomyopathy.

View Article and Find Full Text PDF

For filamentary resistive random-access memory (RRAM) devices, the switching behavior between different resistance states usually occurs abruptly, while the random formation of conductive filaments usually results in large fluctuations in resistance states, leading to poor uniformity. Schottky barrier modulation enables resistive switching through charge trapping/de-trapping at the top-electrode/oxide interface, which is effective for improving the uniformity of RRAM devices. Here, we report a uniform RRAM device based on a MXene-TiO Schottky junction.

View Article and Find Full Text PDF

Objective: The aim of this study was to investigate the efficacy of radiofrequency catheter ablation (RFCA) combined with atrial appendage (AA) resection to treat atrial tachycardia (AT) originating from the AA in children.

Materials And Methods: Using the Ensite three-dimensional electroanatomic mapping system, three children with AT originating from the AA were diagnosed. Clinical features and electrocardiographic (ECG) manifestations were analyzed.

View Article and Find Full Text PDF

Germline gain-of-function (GOF) mutations in the gene lead to a rare primary immunodeficiency disease known as B cell expansion with NF-κB and T cell anergy (BENTA). Affected patients present with a polyclonal expansion of B cells, lymphadenopathy, and splenomegaly. Herein, we report a novel germline in-frame three base-pair deletion (c.

View Article and Find Full Text PDF

Ambient solution-processed conductive materials with a sufficient low work function are essential to facilitate electron injection in electronic and optoelectronic devices but are challenging. Here, we design an electrically conducting and ambient-stable polymer electrolyte with an ultralow work function down to 2.2 eV, which arises from heavy n-doping of dissolved salts to polymer matrix.

View Article and Find Full Text PDF

The photodetector is a key component in optoelectronic integrated circuits. Although there are various device structures and mechanisms, the output current changes either from rectified to fully-on or from fully-off to fully-on after illumination. A device that changes the output current from fully-off to rectified should be possible.

View Article and Find Full Text PDF

Approximately 30% of as-grown carbon nanotube (CNT) networks are metallic, usually leading to a trade-off between carrier mobility and on/off ratio in CNT thin-film transistors (TFTs). Figuring out the key factors of ultra-high on/off ratio in CNT TFTs should be considerably essential for the development of large-scale electronic devices in the future. Here ultra-high on/off ratios of 10-10 are realized for CNT TFTs with mobility of ∼500 cm V s.

View Article and Find Full Text PDF

Surface plasmons, merging photonics and electronics in nanoscale dimensions, have been the cornerstones in integrated informatics, precision detection, high-resolution imaging, and energy conversion. Arising from the exceptional Fermi-Dirac tunability, ultrafast carrier mobility, and high-field confinement, graphene offers excellent advantages for plasmon technologies and enables a variety of state-of-the-art optoelectronic applications ranging from tight-field-enhanced light sources, modulators, and photodetectors to biochemical sensors. However, it is challenging to co-excite multiple graphene plasmons on one single graphene sheet with high density, a key step toward plasmonic wavelength-division multiplexing and next-generation dynamical optoelectronics.

View Article and Find Full Text PDF

The metal/germanium (Ge) photodetectors have attracted much attention for their potential applications in on-chip optoelectronics. One critical issue is the relatively large dark current due to the limited Schottky potential barrier height of the metal/germanium junction, which is mainly caused by the small bandgap of Ge and the Fermi energy level pinning effect between the metal and Ge. The main technique to solve this problem is to insert a thin interlayer between the metal and Ge.

View Article and Find Full Text PDF

Germanium (Ge)-based devices are recognized as one of the most promising next-generation technologies for extending Moore's law. However, one of the critical issues is Fermi-level pinning (FLP) at the metal/n-Ge interface, and the resulting large contact resistance seriously degrades their performance. The insertion of a thin layer is one main technique for FLP modulation; however, the contact resistance is still limited by the remaining barrier height and the resistance induced by the insertion layer.

View Article and Find Full Text PDF

Isoflavones, one of the most important secondary metabolites produced by soybeans ( (L.) Merr.), are important for a variety of biological processes, and are beneficial for human health.

View Article and Find Full Text PDF

The fabrication procedure for each layer of the device in monolithic three-dimensional (3D) integration still follows the design philosophy of traditional planar silicon-based circuits, and such integrated circuits will ultimately be limited by the same scaling constraints that face silicon field-effect transistors. We report the direct formation of laminated 3D integrated circuits by the layer-by-layer stacking of each component through two different techniques. One is to use carbon nanotubes (CNTs) as the channels of thin-film transistors because of their low-temperature fabrication and layer-to-layer transfer capabilities.

View Article and Find Full Text PDF

The nano-opto-electro-mechanical systems (NOEMS) are a class of hybrid solid devices that hold promises in both classical and quantum manipulations of the interplay between one or more degrees of freedom in optical, electrical and mechanical modes. To date, studies of NOEMS using van der Waals (vdW) heterostructures are very limited, although vdW materials are known for emerging phenomena such as spin, valley, and topological physics. Here, we devise a universal method to easily and robustly fabricate vdW heterostructures into an architecture that hosts opto-electro-mechanical couplings in one single device.

View Article and Find Full Text PDF

As a rapidly growing family of 2D transition metal carbides and nitrides, MXenes are recognized as promising materials for the development of future electronics and optoelectronics. So far, the reported patterning methods for MXene films lack efficiency, resolution, and compatibility, resulting in limited device integration and performance. Here, a high-performance MXene image sensor array fabricated by a wafer-scale combination patterning method of an MXene film is reported.

View Article and Find Full Text PDF

Background: Studies on risk factors of sudden cardiac death (CD) or CD in children with hypertrophic cardiomyopathy (HCM) are lacking.

Objectives: To assess factors associated with the risk of sudden CD or CD in HCM children.

Methods: Pubmed, Embase, Cochrane Library, and Web of Science databases were searched.

View Article and Find Full Text PDF

Two-dimensional (2D) materials are promising for next-generation photo detection because of their exceptional properties such as a strong interaction with light, electronic and optical properties that depend on the number of layers, and the ability to form hybrid structures. However, the intrinsic detection ability of 2D material-based photodetectors is low due to their atomic thickness. Photogating is widely used to improve the responsivity of devices, which usually generates large noise current, resulting in limited detectivity.

View Article and Find Full Text PDF

The challenges of developing neuromorphic vision systems inspired by the human eye come not only from how to recreate the flexibility, sophistication, and adaptability of animal systems, but also how to do so with computational efficiency and elegance. Similar to biological systems, these neuromorphic circuits integrate functions of image sensing, memory and processing into the device, and process continuous analog brightness signal in real-time. High-integration, flexibility and ultra-sensitivity are essential for practical artificial vision systems that attempt to emulate biological processing.

View Article and Find Full Text PDF