Publications by authors named "Dongmin Tang"

The asymmetric and divergent total syntheses of two phragmalin (moluccensins G and H) and two khayanolide-type (krishnolide F and khayseneganin F) limonoids were disclosed, which employed a torquoselective interrupted Nazarov cyclization as the key step. Taken together with a Liebeskind-Srogl coupling, a benzoin condensation, and bidirectional acyloin rearrangements, our strategy would simplify the synthetic design of both phragmalin and khayanolide-type limonoids and facilitate their modular syntheses. Moreover, the described approach also provides additional insights into the biosynthetic relationships between these two distinct skeletons.

View Article and Find Full Text PDF

The asymmetric total synthesis of (-)-retigeranic acid A was described, which relies on a crucial reductive skeletal rearrangement cascade for the controllable assembly of diverse angular triquinane subunits. Taken together with an intramolecular Michael/aldol cyclization, an ODI-[5 + 2] cycloaddition/pinacol rearrangement cascade, a Wolff ring contraction and a stereoselective HAT reduction, our synthetic approach has enabled the access to (-)-retigeranic acid A in a concise and practical manner.

View Article and Find Full Text PDF

The total syntheses of nine grayanane diterpenoids, namely, GTX-II (), GTX-III (), rhodojaponin III (), GTX-XV (), principinol D (), iso-GTX-II (), 1,5-seco-GTX-Δ-ene (7), and leucothols B () and D (), that belong to five distinct subtypes, were disclosed in a divergent manner. Among them, six members were accomplished for the first time. The concise synthetic approach features three key transformations: (1) an oxidative dearomatization-induced [5 + 2] cycloaddition/pinacol rearrangement cascade to assemble the bicyclo[3.

View Article and Find Full Text PDF

Wide-bandgap inorganic semiconductors based ultraviolet lasers bring versatile applications with significant advantages including low-power consumption, high-power output, robustness and long-term operation stability. However, flexible membrane lasers remain challenging predominantly due to the need for a lattice matched supporting substrate. Here, we develop a simple laser liftoff process to make freestanding single crystalline ZnO membranes that demonstrate low-threshold ultraviolet stimulated emissions together with large sized dimension (> 2 mm), ultralow-weight (m/A<15 g/m) and excellent flexibility.

View Article and Find Full Text PDF