Publications by authors named "Dongmin Shi"

The early diagnosis of cancer in a point-of-need manner is of great significance, yet it remains challenging to achieve the necessary sensitivity and speed. Traditional lateral flow immunoassay (LFIA) methods are limited in accuracy and quantification, restricting their suitability for home-based applications. Thus, we explored a new and user-friendly electrochemical LFIA (e-LFIA) test strip to detect α-fetoprotein (AFP), a diagnostic marker for liver cancer.

View Article and Find Full Text PDF

Metastasis remains a pivotal characteristic of cancer and is the primary contributor to cancer-associated mortality. Despite its significance, the mechanisms governing metastasis are not fully elucidated. Contemporary findings in the domain of cancer biology have shed light on the molecular aspects of this intricate process.

View Article and Find Full Text PDF

In contemporary times, tumors have emerged as the primary cause of mortality in the global population. Ongoing research has shed light on the significance of neurotransmitters in the regulation of tumors. It has been established that neurotransmitters play a pivotal role in tumor cell angiogenesis by triggering the transformation of stromal cells into tumor cells, modulating receptors on tumor stem cells, and even inducing immunosuppression.

View Article and Find Full Text PDF

Large capacitive loading of electrodes induces massive error current and imperfect settling in the electrochemical signal acquisition process, leading to inaccurate acquisition results. To efficiently mitigate this inaccuracy, this paper presents a current-and-voltage dual-mode acquisition technique in which a voltage front-end (VFE) is employed to acquire the electrode voltage error and compensate the nonlinearity induced by the electrode capacitive loading. Therefore, the gain and bandwidth requirements of the current front end (CFE) can be relaxed to reduce the complexity and power consumption.

View Article and Find Full Text PDF

Background: Cuproptosis is a novel form of cell death that exhibits close association with mitochondrial respiration and occurs through distinct mechanisms compared to previously characterized forms of cell death. However, the precise impact of cuproptosis-associated genes (CAGs) on prognosis, immune profiles, and treatment efficacy in hepatocellular carcinomas (HCC) remains poorly understood.

Methods: A comprehensive analysis of CAGs in hepatocellular carcinoma (HCC) prognosis was conducted using genomic data from HCC patients.

View Article and Find Full Text PDF

Background: MicroRNA-612 (miR-612) has been proven to suppress the formation of invadopodia and inhibit hepatocellular carcinoma (HCC) metastasis by hydroxyacyl-CoA dehydrogenase alpha subunit (HADHA)-mediated lipid reprogramming. However, its biological roles in HCC cell ferroptosis remain unclear.

Methods And Results: In this study, we found that HCC cells with high metastatic potential were more resistant to ferroptosis, indicating that ferroptosis is related to HCC metastasis.

View Article and Find Full Text PDF

A one-pot metal-free protocol to access indazoles from easily available 2-aminophenones and hydroxylamine derivatives has been achieved. The reaction is operationally simple, mild, and insensitive to air and moisture. A broad range of indazoles were prepared in good to excellent yield (up to 97% yield), and the reaction displayed a broad functional group tolerance.

View Article and Find Full Text PDF

Metastasis is a landmark event for rapid postsurgical relapse and death of HCC patients. Although distinct genomic and transcriptomic profiling of HCC metastasis had been reported previously, the causal relationships of somatic mutants, mRNA levels and metastatic potentials were difficult to be established in clinic. Therefore, 11 human HCC cell lines and 7 monoclonal derivatives with definite metastatic potentials and tropisms were subjected to whole exome sequencing (WES) and whole transcriptome sequencing (WTS).

View Article and Find Full Text PDF

Analysis of cytokines levels in human serum is critical as it can be a "symptom diagnostic biomarker" in COVID-19, giving real-time information about human health status. Here, we present the construction and performance of a low-price immunosensor (∼US$0.428 per test) based on microfluidic paper-based system to detect cytokine for predicting the health status of COVID-19 patients.

View Article and Find Full Text PDF

Aggravated by human and industrial activities, heavy metal pollution has become a severe problem, causing widespread concern in society, and cannot be ignored. Herein, a graphene/gold nanoparticle-hybrid (AuNPs/ERGO) was proposed and synthesized by electrochemical methods. Based on the AuNPs/ERGO hybrid, a novel electrochemical sensing platform was established and successfully applied for the selective, quantitative detection of Hg, taking advantage of the well-established anodic stripping voltammetry (ASV).

View Article and Find Full Text PDF

Cytokines are important factors in the early diagnosis of autoimmune diseases and require high sensitivity, high selectivity and quantitative detection. We proposed a miniaturized electrochemical magneto-immunosensor (EC-MIS) on portable interleukin-6 (IL-6) detection based on this requirement. Firstly, a micro-fabricated working electrode is electrochemically modified with a hybrid of reduced graphene oxide (rGO) and gold nanoparticles (AuNPs).

View Article and Find Full Text PDF

Background: S-adenosylmethionine decarboxylase proenzyme (AMD1) is a key enzyme involved in the synthesis of spermine (SPM) and spermidine (SPD), which are associated with multifarious cellular processes. It is also found to be an oncogene in multiple cancers and a potential target for tumor therapy. Nevertheless, the role AMD1 plays in hepatocellular carcinoma (HCC) is still unknown.

View Article and Find Full Text PDF

Purpose: S100A6 protein (calcyclin), a small calcium-binding protein of the S100 family, is often upregulated in various types of cancers, including hepatocellular carcinoma (HCC). The aim of this study was to illustrate the molecular mechanism of S100A6 in regulating the proliferation and migration of HCC cells.

Methods: The expressions of S100A6 in human HCC and adjacent non-tumor liver specimens were detected using immunoblotting and quantitative PCR (qPCR).

View Article and Find Full Text PDF

Epithelial-mesenchymal transition (EMT), a pivotal event during cancer progression such as relapse and metastasis, is positively correlated with the stemness potency of tumor cells. Our previous study showed that miR-296-5p attenuated EMT program of hepatocellular carcinoma cells (HCC) through NRG1/ERBB2/ERBB3 signaling. In the present study, we uncovered that miR-296-5p was able to inhibit the stemness potency of HCC by decreasing the number and size of tumorspheres, downregulating the expression of CSC biomarkers and hampering the ability of tumorigenesis in NOD/SCID mice.

View Article and Find Full Text PDF

: Fucoidan is a fucose-enriched, sulfated polysaccharide found in brown algae; in recent years, this polysaccharide has been found to exert several biological effects, including antitumor effects, such as antiproliferation, activating apoptosis, and anti-angiogenesis of cancer cells. However, the antimetastatic effect of fucoidan and the related targeting receptors remain unknown. In the present study, we examined the inhibition of invadopodia formation and underlying mechanism of fucoidan on human liver cancer cells.

View Article and Find Full Text PDF

Herein, we report a novel Fe foil-guided, in situ etching strategy for the preparation of highly uniform Ag@AgX (X = Cl, Br) nanowires (NWs) and applied the photoelectric-responsive materials for sensitive photoelectrochemical (PEC) detection of leukemia DNA. The Ag@AgX NW formation process was discussed from the redox potential and K value. The fabricated PEC platform for sensing leukemia DNA showed good assay performance with a wide linear range (0.

View Article and Find Full Text PDF

Background: Accumulation of evidence indicates that miRNAs have crucial roles in the regulation of EMT-associated properties, such as proliferation, migration and invasion. However, the underlying molecular mechanisms are not entirely illustrated. Here, we investigated the role of miR-296-5p in hepatocellular carcinoma (HCC) progression.

View Article and Find Full Text PDF

Despite some recent developments on the portable on-site sensor of Aflatoxin B1 (AFB1), the complex and expensive preparation of recognition elements have still limited their wide applications. In this paper, using the fast, low-cost, and stable recognition of aptamer DNA-AFB1, a portable aptasensor was constructed for the on-site detection of AFB1 in food matrixes, with the readout of personal glucose meter (PGM) and DNA walking machine for signal probe separation. In such an assay protocol, the target could trigger the DNA walker to autonomously move on the electrode surface, propelled by unidirectional Pb-specific DNAzyme digestion, which could amplify the signal and separate the signal probe as well for further quantification by the PGM.

View Article and Find Full Text PDF

This paper reported a novel colorimetric assay strategy for avidin and biotin interactions based on terminal protection of the biotinylated single-stranded DNA and the surface plasmon resonance adsorption of gold nanoparticles (AuNPs). In this assay, it was firstly found that biotin-ssDNA specifically bound to the target protein avidin with strong affinity could be protected from hydrolysis by exonuclease I (Exo I). Furthermore, a colorimetric strategy was designed for the detection of avidin and biotin interactions.

View Article and Find Full Text PDF

Background: The miRNA miR-106b-5p has been previously reported to be increased in hepatocellular carcinoma (HCC) tissues compared to cirrhotic tissues. The purpose of this study was to detect its expression in HCC cell lines with distinct metastatic potentials and to explore the molecular mechanisms underlying HCC stemness and migration.

Methods: miR-106b-5p expression was studied in HCC tissues and cell lines.

View Article and Find Full Text PDF

Sensitive and rapid detection of platelet-derived growth factor BB (PDGF-BB), a cancer-related protein, could help early diagnosis, treatment, and prognosis of cancers. Although some methods have been developed to detect PDGF-BB, few can provide quantitative results using an affordable and portable device that is suitable for home use or field application. In this work, we report the first use of a portable kind of personal glucose meter (PGM) combining a catalytic and molecular beacon (CAMB) system with a cation exchange reaction (CX reaction) for ultrasensitive PDGF-BB assay.

View Article and Find Full Text PDF

In our previous study we found that miR-612 negatively regulated stem cell-like property and tumor metastasis of hepatocellular carcinoma cells (HCC). In this study, we try to elucidate underlying mechanism of the regulation, and find that miR-612 inversely modulate the mRNA and protein level of epithelial cell adhesion molecule as well as CD133, negatively regulate the numbers and sizes of tumor spheres, directly inhibit the protein level of Sp1, and subsequently reduce transcription activity of Nanog. Of importance, the higher levels of Sp1 and Nanog in biopsies are the more unfavorable prognoses of HCC patients are found after tumor resection.

View Article and Find Full Text PDF

In this paper, a novel colorimetric method for the detection of alkaline phosphatase (ALP) and pyrophosphate (PPi) was designed based on a Cu(2+)-horseradish peroxidase (HRP)-3,3',5,5'-tetra-methylbenzidine (TMB)-H2O2 system. In the presence of ALP, l-ascorbic acid-2-phosphate (AAP) could be hydrolyzed to ascorbic acid which could reduce Cu(2+) to Cu(+) to inhibit the enzymatic activity of HRP in the colorimetric system. The change in absorbance was found to be proportional to the ALP concentration with a linear detection range and a limit of detection of 5.

View Article and Find Full Text PDF

The oncogene, mouse double minute 2 (MDM2), has been implicated in the pathogenesis of numerous cancers. In this study, we investigated the role of MDM2 in epithelial-to-mesenchymal transition (EMT) and the underlying mechanisms in breast cancer cells in vitro and in vivo. The results showed that up-regulation of MDM2 in MCF-7 cells altered the cell morphology to a mesenchymal phenotype.

View Article and Find Full Text PDF

Objectives: In the current study, we explored the relationship between glycoprotein Ia (GPIa) C807T polymorphisms and platelet function, and the sensitivity to dual antiplatelet treatment after percutaneous coronary intervention.

Materials And Methods: We conducted a case-control study in 220 patients diagnosed with acute coronary syndrome (ACS) and 220 healthy controls. The platelet GPIa C807T genotypes of patients and controls were determined, and platelet aggregation and plasma concentrations of α-granule membrane protein (GMP-140) were assessed following stimulation with arachidonic acid and adenosine diphosphate.

View Article and Find Full Text PDF