Mechanoluminescence (ML) is the nonthermal luminescence generated in the process of force-to-light conversion, which has broad prospects in stress sensing, wearable devices, biomechanics, and multiple information anticounterfeiting. Multivalence emitter ions utilize their own self-reduction process to realize multiband ML without introducing another dopant, such as Eu/Eu, Sm/Sm, and Mn/Mn. However, self-reduction-induced ML in bismuth-activated materials has rarely been reported so far.
View Article and Find Full Text PDFMechanoluminescence (ML) materials are featured with the characteristic of "force to light" in response to external stimuli, which have made great progress in artificial intelligence and optical sensing. However, how to effectively enable ML in the material is a daunting challenge. Here, a LuAlGaO:Cr (LAGO: Cr) near infrared (NIR) ML material peaked at 706 nm is reported, which successfully realizes the key to unlock ML by the lattice-engineering strategy Ga substitution for Al to "grow" oxygen vacancy (O) defects.
View Article and Find Full Text PDFMechanoluminescence (ML) materials have found potential applications in information storage, anti-counterfeiting, and stress sensing. Conventional stress sensing based on absolute ML intensity is prone to significant mistakes owing to the unpredictability of measurement surroundings. However, implementing a ratiometric ML sensing technique may considerably ameliorate this issue.
View Article and Find Full Text PDFInorganic lead halide perovskite quantum dots (CsPbX QDs (X = Cl, Br, or I)) have attracted more and more attention due to their high absorption coefficient, narrow emission band, high quantum efficiency, and tunable emission wavelength. However, CsPbX QDs are decomposed when exposed to bright light, heat, moisture, ., which leads to severe luminous attenuation and limits their commercial application.
View Article and Find Full Text PDFAn activator's selective occupation of a host is of great significance for designing high-quality white light-emitting diode phosphors, while achieving a full-spectrum single-phase white light emission phosphor is challenging. In this study, a boron phosphate solid-solution NaY(BO)(PO)O:0.005 Bi (NYBPO:0.
View Article and Find Full Text PDFIncreasing circular RNAs (circRNAs) have been identified as pivotal players in nonsmall cell lung cancer (NSCLC). The study will explore the function and mechanism of circRNA High Mobility Group AT-hook 2 (circHMGA2) in NSCLC. The circHMGA2, microRNA-331-3p (miR-331-3p) and HMGA2 expression analyses were performed via quantitative real-time PCR.
View Article and Find Full Text PDFResearch on high-performance gas sensors for detecting toxic and harmful methanol gas is still a very important issue. For gas sensors, it is very important to be able to achieve low concentration detection at room temperature. In this work, we used the electrospinning method to prepare Mg-doped InSnO nanofiber field-effect transistors (FETs) methanol gas sensor.
View Article and Find Full Text PDFWith the rapid development of wearable artificial intelligence devices, there is an increasing demand for flexible oxide neuromorphic transistors with the solid electrolytes. To achieve high-performance flexible synaptic transistors, the solid electrolytes should exhibit good mechanical bending characteristics and high ion conductivity. However, the polymer-based electrolytes with good mechanical bending characteristics show poor ion conductivity (10-10S cm), which limits the performance of flexible synaptic transistors.
View Article and Find Full Text PDFCountering the optical network 'capacity crunch' calls for a radical development in optical fibres that could simultaneously minimize nonlinearity penalties, chromatic dispersion and maximize signal launch power. Hollow-core fibres (HCF) can break the nonlinear Shannon limit of solid-core fibre and fulfil all above requirements, but its optical performance need to be significantly upgraded before they can be considered for high-capacity telecommunication systems. Here, we report a new HCF with conjoined-tubes in the cladding and a negative-curvature core shape.
View Article and Find Full Text PDFIntensity-modulated radiation therapy (IMRT) is able to achieve good target conformance with a limited dose to organs at risk (OARs); however, IMRT increases the irradiation volume and monitor units (MUs) required. The present study aimed to evaluate the use of an IMRT plan with fewer segments and MUs, while maintaining quality in the treatment of nasopharyngeal carcinoma. In the present study, two types of IMRT plan were therefore compared: The direct machine parameter optimization (DMPO)-RT method and the feedback constraint DMPO-RT (fc_DMPO-RT) method, which utilizes compensative feedback constraint in DMPO-RT and maintains optimization.
View Article and Find Full Text PDFTo select a specifically binding peptide for imaging detection of human esophageal squamous cell carcinoma (ESCC), a phage-displayed 12-mer peptide library was used to screen the peptide that bind to ESCC cells specifically. After four rounds of bio-panning, the phage recovery rate gradually increased, and specific phage clones were effectively enriched. The 60 randomly selected phage clones were tested using cellular enzyme-linked immunosorbent assay (ELISA), and 41 phage clones were identified as positive clones with the over 2.
View Article and Find Full Text PDFMaterials (Basel)
September 2013
The aqueous dispersion behavior of ZrB₂, SiC powders with B₄C and C as sintering aids was investigated. Well co-dispersed suspension can be obtained in acidic solutions in presence of polyethyleneimine (PEI). The adsorption of PEI on the powder surface was measured by thermal gravimetric (TG) analysis.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
September 2012
Magnetic Hydroxyapatite (HAP) particles were successfully synthesized at different concentration of Fe2+ by a co-precipitation method. The influences of concentration of doped ions and calcination temperature on the morphology and magnetic property were studied. The iron ions-doped HAP still kept its structure similar to conventional HAP and no second phases were detected.
View Article and Find Full Text PDFNovel surface-enhanced Raman scattering (SERS) substrates with high SERS-activity are ideal for novel SERS sensors, detectors to detect illicitly sold narcotics and explosives. The key to the wider application of SERS technique is to develop plasmon resonant structure with novel geometries to enhance Raman signals and to control the periodic ordering of these structures over a large area to obtain reproducible Raman enhancement. In this work, a simple Ar(+)-ion sputtering route has been developed to fabricate silver nanoneedles arrays on silicon substrates for SERS-active substrates to detect trace-level illicitly sold narcotics.
View Article and Find Full Text PDFA simple Ar(+)-ion irradiation route has been developed to prepare gold nanoneedle arrays on glass substrates for surface-enhanced Raman scattering (SERS)-active substrates. The nanoneedles exhibited very sharp tips with an apex diameter of 20 nm. These arrays were evaluated as potential SERS substrates using malachite green molecules and exhibited a SERS enhancement factor of greater than 10(8), which is attributed to the localized electron field enhancement around the apex of the needle and the surface plasmon coupling originating from the periodic structure.
View Article and Find Full Text PDFAn ordered dental enamel-like structure of hydroxyapatite (HAp) was achieved through a solution mediated solid-state conversion process with organic phosphate surfactant and gelatin as the mediating agent. Transmission electron microscopy (TEM) tests demonstrated uniform sizes in the obtained apatite nanorods which arranged in parallel to each other along the c-axis and formed organized microarchitectural units over 10 microm in size. The sizes of the synthetic hydroxyapatite nanorods were similar to that observed in enamel from human teeth.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
January 2010
Porous hydroxyapatite (HAP) ceramics with different morphologies were fabricated by the freeze casting method. The morphologies of HAP ceramics were modified by adjusting the concentration of polyvinyl alcohol (PVA) additive in the HAP slurries. HAP ceramics without PVA additive were composed of non-interconnected macroscopic lamellar pores and porous ceramic walls.
View Article and Find Full Text PDFThe dispersion of TiN powders in aqueous media was studied through XPS, zeta potential, adsorption, sedimentation, and rheology measurements. XPS showed that there are TiO2, TiN, and TiOxNy sites on the TiN particle surface. In the absence of dispersant, the isoelectric point (pH(IEP)) of the TiN particles was at pH 2.
View Article and Find Full Text PDFJ Mater Sci Mater Med
February 2005
Porous hydroxyapatite (HAp) ceramics with controlled pore characteristics were fabricated using slip casting method by mixing PMMA with HAp powder. The optimum conditions of HAp slip for slip casting was achieved by employing various experimental techniques, zeta potential and sedimentation, as a function of pH of the slips in the pH range of 4-12. HAp suspensions displayed an absolute maximum in zeta potential values and a minimum in sedimentation height at pH 11.
View Article and Find Full Text PDFZhong Xi Yi Jie He Xue Bao
January 2004
Objective: To examine the effect of different reduced caloric intake on mice transplanted with S180 ascitic tumor.
Methods: The institute for cancer research (ICR) mice were randomly divided into control group, 3.0 standard feed (SF) group, 2.
J Biomed Mater Res B Appl Biomater
April 2004
Wollastonite/tricalcium phosphate composites were prepared and immersed in SBF for various periods to investigate the apatite-formation mechanism on their surfaces. Surface morphologies and composition before and after immersion were analyzed by SEM and EDS technologies. The concentration changes of calcium, silicon, and phosphorus in SBF due to the immersion of the samples were measured with inductively coupled plasma atomic emission spectroscopy, and the corresponding pH values in SBF were recorded.
View Article and Find Full Text PDF