Creating a heterostructure by combining two magnetically and structurally distinct ruthenium oxides is a crucial approach for investigating their emergent magnetic states and interactions. Previously, research has predominantly concentrated on the intrinsic properties of the ferromagnet SrRuO and recently discovered altermagnet RuO solely. Here, the study engineers an ultrasharp sublattice-matched heterointerface using pseudo-cubic SrRuO and rutile RuO, conducting an in-depth analysis of their spin interactions.
View Article and Find Full Text PDFThe magnetic correlations at the superconductor/ferromagnet (S/F) interfaces play a crucial role in realizing dissipation-less spin-based logic and memory technologies, such as triplet-supercurrent spin-valves and 'π' Josephson junctions. Here we report the observation of an induced large magnetic moment at high-quality nitride S/F interfaces. Using polarized neutron reflectometry and DC SQUID measurements, we quantitatively determined the magnetization profile of the S/F bilayer and confirmed that the induced magnetic moment in the adjacent superconductor only exists below .
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2023
High-performance artificial synaptic devices with rich functions are highly desired for the development of an advanced brain-like neuromorphic system. Here, we prepare synaptic devices based on a CVD-grown WSe flake, which has an unusual morphology of nested triangles. The WSe transistor exhibits robust synaptic behaviors such as excitatory postsynaptic current, paired-pulse facilitation, short-time plasticity, and long-time plasticity.
View Article and Find Full Text PDFOne-dimensional (1D) organic-inorganic hybrid perovskite nanowires (NWs) with well-defined structures possess superior optical and electrical properties for optoelectronic applications. However, most of the perovskite NWs are synthesized in air, which makes the NWs susceptible to water vapor, resulting in large amounts of grain boundaries or surface defects. Here, a template-assisted antisolvent crystallization (TAAC) method is designed to fabricate CHNHPbBr NWs and arrays.
View Article and Find Full Text PDFTwo-dimensional (2D) materials and their heterostructures have been intensively studied in recent years due to their potential applications in electronic, optoelectronic, and spintronic devices. Nonetheless, the realization of 2D heterostructures with atomically flat and clean interfaces remains challenging, especially for air-sensitive materials, which hinders the in-depth investigation of interface-induced phenomena and the fabrication of high-quality devices. Here, we circumvented this challenge by exfoliating 2D materials in an ultrahigh vacuum.
View Article and Find Full Text PDFInterfaces formed by correlated oxides offer a critical avenue for discovering emergent phenomena and quantum states. However, the fabrication of oxide interfaces with variable crystallographic orientations and strain states integrated along a film plane is extremely challenging by conventional layer-by-layer stacking or self-assembling. Here, the creation of morphotropic grain boundaries (GBs) in laterally interconnected cobaltite homostructures is reported.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2021
Layered metal thiophosphates with a general formula MPX (M is a group VIIB or VIII element and X is a chalcogen) have emerged as a novel member in a two-dimensional (2D) family with fascinating physical and chemical properties. Herein, the photoelectric performance of the few-layer MnPSe was studied for the first time. The multilayer MnPSe shows p-type conductivity and its field-effect transistor delivers an ultralow dark current of about 0.
View Article and Find Full Text PDF