Passive cooling materials, as a promising choice for mitigating the global energy crisis, have limited use as their cooling effects are usually weakened or lost by dust contamination. In this study, a passive cooling polyethylene (PE) film with self-cleaning properties is prepared by picosecond laser ablation. Numerous root-like hierarchical porous micro/nano-structures were obtained on the double side of the PE film.
View Article and Find Full Text PDFSolar desalination and fog harvesting are two common ways to obtain fresh water, and both are promising methods to solve the water shortage problem. However, through either the fabrication of interfacial evaporators for solar desalination or the preparation of superwetting surfaces for fog harvesting, current methods suffer from long preparation times, high costs, and low efficiency. Herein, we report an efficient and simple method to process heterogeneous surfaces (HSs) on aluminum (Al) by picosecond laser processing combined with chemical treatment used for fog harvesting and seawater desalination.
View Article and Find Full Text PDFHeterogeneous surface with superhydrophilic/superhydrophobic stripes (HS-s/sS) has great practical significance, which can be used in fuel cell water management, condensation heat transfer enhancement, underwater drag reduction. Herein, a fast and simple method for uniform HS-s/sS on several mesh materials, including copper, stainless steel, and nickel, is achieved by using picosecond (ps) laser line-by-line scanning. Note that the scanning period between the lines is kept constant during processing, the HS-s/sS is formed by self-organized, while the similar structure cannot be processed on solid metal surfaces using the same parameters.
View Article and Find Full Text PDFHere, a double pulse Bessel beam was acquired by modulating a femtosecond laser Gaussian beam from both spatial and temporal scales. The double pulse Bessel beam ablation of silicon was studied systematically. The experimental results showed that when the time delay was 0.
View Article and Find Full Text PDFBioinspired slippery surfaces with excellent abilities, such as antifouling, anticorrosion, and drag reduction, have gained increasing attention due to their multifunction in chemistry, biology, and medicine. However, the present thermally responsive methods used for in situ paraffin-infused slippery surfaces (PISS) are usually based on a surface heat source or certain specific photothermal materials, which seriously hinders their practical applications. Herein, we present a kind of in situ PISS processed by femtosecond laser on nickel (Ni) foam with reversible droplet behavior between sliding and pinning controlled by a point heat source.
View Article and Find Full Text PDFA hybrid sensing configuration for simultaneous measurement of strain and temperature based on fiber Bragg grating (FBG) written in an offset multimode fiber (MMF) interferometer using femtosecond laser pulse is proposed and demonstrated. A Mach-Zehnder interferometer is formed by splicing a section of MMF between two single-mode fibers (SMFs) and a high interference fringe of up to 15 dB is achieved. The sensing experimental results show a strain sensitivity of -1.
View Article and Find Full Text PDFThe femtosecond laser machining of fused silica in air and liquids is studied. The ablation threshold of fused silica is reduced from 2.22 to ${1.
View Article and Find Full Text PDFSurfaces with switchable bubble wettability have attracted increasing interest due to their wide applications in the field of underwater drag reduction, gas collection and site water treatment. In this paper, a fast, simple and substrate-independent method that achieved reversible switching between underwater superaerophilicity and superaerophobicity on femtosecond laser induced superhydrophobic surfaces by alternative ultrasonic treatment in water and drying in air was reported. After laser processing, the as-prepared superhydrophobic surface showed underwater superaerophilicity due to the trapped air layer.
View Article and Find Full Text PDFMassive discharging of oily wastewater has a serious impact on the ecological environment and human health. However, the rapid development of an efficient separation membrane exhibiting anti-fouling and long-term stability for highly emulsified oily wastewater separation remains a challenge. Herein, a superwettable porous Ti foam was fabricated via a facile and ultrafast strategy of femtosecond laser direct writing.
View Article and Find Full Text PDFWater scarcity is a serious global challenge, especially in arid and desert regions. Functional devices for directional water transport and fog collection have received increasing attention. Existing methods and technologies suffer from low fog-collecting efficiencies, complicated fabrication processes, and high fabrication costs.
View Article and Find Full Text PDFMarine oil spills have induced severe water pollution and threatened sea ecosystems, which also result in a loss of energy resources. To deal with this problem, much work has been done for using superhydrophobic or superhydrophilic mesh for oil-water separation. Nevertheless, there are still great challenges in the rapid fabrication of extremely durable mesh with superwetting properties, particularly considering the highly efficient oil-water separation.
View Article and Find Full Text PDF