The proper distribution of lipids within organelle membranes requires rapid interorganelle lipid transport, much of which occurs at membrane contact sites and is mediated by lipid transfer proteins (LTPs). Our current understanding of LTP mechanism and function is based largely on structural studies and in vitro reconstitution. Existing cellular assays for LTP function use indirect readouts, and it remains an open question as to whether substrate specificity and transport kinetics established in vitro are similar in cellular settings.
View Article and Find Full Text PDFCanonically, G-protein-coupled receptor (GPCR) signaling is transient and confined to the plasma membrane (PM). Deviating from this paradigm, the parathyroid hormone receptor (PTHR1) stimulates sustained G signaling at endosomes. In addition to G, PTHR1 activates G signaling; yet, in contrast to the PTHR1-G pathway, the spatiotemporal dynamics of the G branch of PTHR1 signaling and its relationship to G signaling remain largely ill defined.
View Article and Find Full Text PDFPhospholipase Ds (PLDs) are multifunctional and disease-relevant enzymes operating at the center of phospholipid metabolism and signaling. Physiologically, they hydrolyze abundant phospholipids into phosphatidic acid (PA), a potent lipid second messenger and central biosynthetic intermediate. Given the pleiotropic nature of PA, the multiple locations of PLD activity within single cells, and differences in PLD activities across cell types in vivo, tools with spatiotemporal precision are urgently needed to dissect the signaling functions of PLDs.
View Article and Find Full Text PDFThe fidelity of signal transduction requires spatiotemporal control of the production of signaling agents. Phosphatidic acid (PA) is a pleiotropic lipid second messenger whose modes of action differ based on upstream stimulus, biosynthetic source, and site of production. How cells regulate the local production of PA to effect diverse signaling outcomes remains elusive.
View Article and Find Full Text PDF