We enrolled arriving international air travelers in a severe acute respiratory syndrome coronavirus 2 genomic surveillance program. We used molecular testing of pooled nasal swabs and sequenced positive samples for sublineage. Traveler-based surveillance provided early-warning variant detection, reporting the first US Omicron BA.
View Article and Find Full Text PDFBackground: There is concern that the microbially rich activated sludge environment of wastewater treatment plants (WWTPs) may contribute to the dissemination of antibiotic resistance genes (ARGs). We applied long-read (nanopore) sequencing to profile ARGs and their neighboring genes to illuminate their fate in the activated sludge treatment by comparing their abundance, genetic locations, mobility potential, and bacterial hosts within activated sludge relative to those in influent sewage across five WWTPs from three continents.
Results: The abundances (gene copies per Gb of reads, aka gc/Gb) of all ARGs and those carried by putative pathogens decreased 75-90% from influent sewage (192-605 gc/Gb) to activated sludge (31-62 gc/Gb) at all five WWTPs.
In the fight to limit the global spread of antibiotic resistance, the assembly of environmental metagenomes has the potential to provide rich contextual information (e.g., taxonomic hosts, carriage on mobile genetic elements) about antibiotic resistance genes (ARG) in the environment.
View Article and Find Full Text PDFContext: The August 2016 Louisiana flood marked the second 500-year flood in the state in 1 year.
Objective: The aim of this study was to identify private well user needs in the aftermath of the flood and to develop disaster planning and recovery recommendations for flood-prone well-reliant communities.
Design: A descriptive cross-sectional study was conducted to collect information from a convenience sample of flood-impacted well users via surveys and water sampling kits, which were distributed to well users 9 to 11 weeks after floodwaters receded (n = 106).
Hot water premise plumbing has emerged as a critical nexus of energy, water, and public health. The composition of hot water microbiomes is of special interest given daily human exposure to resident flora, especially opportunistic pathogens (OPs), which rely on complex microbial ecological interactions for their proliferation. Here, we applied shotgun metagenomic sequencing to characterize taxonomic and functional shifts in microbiomes as a function of water heater temperature setting, stagnation in distal pipes, and associated shifts in water chemistry.
View Article and Find Full Text PDFBackground: Several biotic and abiotic factors have been reported to influence the proliferation of microbes, including Legionella pneumophila, in hot water premise plumbing systems, but their combined effects have not been systematically evaluated. Here, we utilize simulated household water heaters to examine the effects of stepwise increases in temperature (32-53 °C), pipe material (copper vs. cross-linked polyethylene (PEX)), and influent assimilable organic carbon (0-700 μg/L) on opportunistic pathogen gene copy numbers and the microbiota composition, as determined by quantitative polymerase chain reaction and 16S rRNA gene amplicon sequencing.
View Article and Find Full Text PDFThe "exposome" is a term describing the summation of one's lifetime exposure to microbes and chemicals. Such exposures are now recognized as major drivers of human health and disease. Because humans spend ∼90% of their time indoors, the built environment exposome merits particular attention.
View Article and Find Full Text PDFBackground: The indigenous gut microbiota are thought to play a crucial role in the development and maintenance of the abnormal inflammatory responses that are the hallmark of inflammatory bowel disease. Direct tests of the role of the gut microbiome in these disorders are typically limited by the fact that sampling of the microbiota generally occurs once disease has become manifest. This limitation could potentially be circumvented by studying patients who undergo total proctocolectomy with ileal pouch anal anastomosis (IPAA) for the definitive treatment of ulcerative colitis.
View Article and Find Full Text PDFDespite the widespread use of monochloramine in drinking water treatment, there is surprisingly little information about its mode of action. In this study, DNA microarrays were used to investigate the global gene expression of Escherichia coli cells exposed to sub-lethal concentrations of monochloramine, with a focus on temporal dynamics. Genes induced by monochloramine were associated with several stress response functions, including oxidative stress, DNA repair, multidrug efflux, biofilm formation, antibiotic resistance, and cell wall repair.
View Article and Find Full Text PDFBackground: The study of bacterial species interactions in a mixed-species community can be facilitated by transcriptome analysis of one species in the community using cDNA microarray technology. However, current applications of microarrays are mostly limited to single species studies. The purpose of this study is to develop a method to separate one species, Escherichia coli as an example, from mixed-species communities for transcriptome analysis.
View Article and Find Full Text PDFSignaling and regulatory pathways that guide gene expression have only been partially defined for most organisms. However, given the increasing number of microarray measurements, it may be possible to reconstruct such pathways and uncover missing connections directly from experimental data. Using a compendium of microarray gene expression data obtained from Escherichia coli, we constructed a series of Bayesian network models for the reactive oxygen species (ROS) pathway as defined by EcoCyc.
View Article and Find Full Text PDFBiodegradation efficiency of hydrocarbons and melioration of micro-ecosystem conditions in acid soils should be seriously concerned due to either occurrence of acid polluted soils or acidification during bioremediation process. The influence of acid situation on degrading microbes and the biodegradation rate were figured out by monitoring variations of biomass, microbial activities and petroleum contents with time in acid and alkaline polluted soils in laboratory. Injecting degrading microbes and meliorating micro-ecosystem conditions of acid soils were conducted.
View Article and Find Full Text PDF