Solution-processed metal-oxide thin-film transistors (TFTs) with different metal compositions are investigated for ex situ and in situ radiation hardness experiments against ionizing radiation exposure. The synergetic combination of structural plasticity of Zn, defect tolerance of Sn, and high electron mobility of In identifies amorphous zinc-indium-tin oxide (Zn-In-Sn-O or ZITO) as an optimal radiation-resistant channel layer of TFTs. The ZITO with an elemental blending ratio of 4:1:1 for Zn/In/Sn exhibits superior ex situ radiation resistance compared to In-Ga-Zn-O, Ga-Sn-O, Ga-In-Sn-O, and Ga-Sn-Zn-O.
View Article and Find Full Text PDFIn this paper, four organic materials based on dithieno[3,2-b : 2',3'-d]thiophene (DTT) core structure with end-capping groups (phenyl and thienyl) and linker (acetylenic and olefinic) between DTT-core and end-capping groups were synthesized and characterized as solution-processable organic semiconductors (OSCs) for organic field-effect transistors (OFETs). Thermal, optical, and electrochemical properties of the corresponding materials were determined. Next, all DTT-derivatives were coated by solution-shearing method, and the thin-film microstructures and morphologies were investigated.
View Article and Find Full Text PDFOrganic semiconductors hold the promise of simple, large area solution deposition, low thermal budgets as well as compatibility with flexible substrates, thus emerging as viable alternatives for cost-effective (opto)-electronic devices. In this study, we report the optimized synthesis and characterization of a helically shaped polycyclic aromatic compound, namely benzo[i]pentahelicene-3,6-dione, and explored its use in the fabrication of organic field effect transistors. In addition, we investigated its thermal, optical absorption, and electrochemical properties.
View Article and Find Full Text PDFThe rapid emergence of organic (opto)electronics as a promising alternative to conventional (opto)electronics has been achieved through the design and development of novel π-conjugated systems. Among various semiconducting structural platforms, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) π-systems have recently attracted attention for use in organic thin-films transistors (OTFTs) and organic photovoltaics (OPVs). This Review article provides an overview of the developments in the past 10 years on the structural design and synthesis of BODIPY-based organic semiconductors and their application in OTFT/OPV devices.
View Article and Find Full Text PDFThe molecular design, synthesis, and characterization of an acceptor-donor-acceptor (A-D-A) semiconductor BDY-Ph-2T-Ph-BDY comprising a central phenyl-bithiophene-phenyl π-donor and BODIPY π-acceptor end-units is reported. The semiconductor shows an optical band gap of 2.32 eV with a highly stabilized HOMO/LUMO (-5.
View Article and Find Full Text PDF