Publications by authors named "Donghyuck Yoo"

Article Synopsis
  • Developing anticancer drugs that specifically target cancer cells while minimizing harm to normal cells is complicated, but targeting cancer-specific properties like high reactive oxygen species and altered redox balance offers a potential solution.
  • A new pro-oxidant, benzoyloxy dibenzyl carbonate (B2C), was created to deplete the antioxidant glutathione (GSH) and increase oxidative stress in cancer cells to lethal levels.
  • In animal models, B2C demonstrated effectiveness by inducing cancer cell death and significantly inhibiting tumor growth, suggesting it could lead to new, more targeted anticancer therapies.
View Article and Find Full Text PDF

Curcumin is a major active phenolic component of turmeric and has gained great attention in pharmaceutics due to its potent antioxidant, anti-inflammatory and anticancer activity. Here, we developed poly(oxalate-co-curcumin) (POC) as a hydrogen peroxide (HO)-activatable polymeric prodrug of curcumin by incorporating curcumin in the backbone of HO-responsive polyoxalate. POC particles effectively scavenged HO and released curcumin in a HO-triggered manner.

View Article and Find Full Text PDF

Heme oxygenase-1 (HO-1) is a stress-response protein with potent cytoprotective and antioxidant activity, and its expression in cancer cells is enhanced in response to chemotherapy and radiotherapy. HO-1 is known to serve as a shield to protect cancer cells from anticancer therapy and attenuate apoptotic signals. It can be therefore reasoned that inhibition of HO-1 reduces the antioxidant level, making cancer cells more sensitive to photothermal heating.

View Article and Find Full Text PDF

Muscles of peripheral artery disease (PAD) patients are under oxidative stress associated with a significantly elevated level of reactive oxygen species (ROS) including hydrogen peroxide (HO). Curcumin is a major active constituent of turmeric and is well known for its highly potent antioxidant, anti-inflammatory and angiogenic effects. We previously reported antioxidant vanillyl alcohol-incorporated copolyoxalate (PVAX) which is designed to rapidly scavenge HO and release bioactive vanillyl alcohol and CO in a HO-triggered manner.

View Article and Find Full Text PDF

A thrombus (blood clot), composed mainly of activated platelets and fibrin, obstructs arteries or veins, leading to various life-threatening diseases. Inspired by the distinctive physicochemical characteristics of thrombi such as abundant fibrin and an elevated level of hydrogen peroxide (HO), we developed thrombus-specific theranostic (T-FBM) nanoparticles that could provide HO-triggered photoacoustic signal amplification and serve as an antithrombotic nanomedicine. T-FBM nanoparticles were designed to target fibrin-rich thrombi and be activated by HO to generate CO bubbles to amplify the photoacoustic signal.

View Article and Find Full Text PDF

Drug delivery systems have been extensively developed to enhance the therapeutic efficacy of drugs by altering their pharmacokinetics and biodistribution. However, the use of high quantities of drug delivery systems can cause toxicity due to their poor metabolism and elimination. In this study, we developed polysaccharide-based drug delivery systems which exert potent therapeutic effects and could display synergistic therapeutic effects with drug payloads, leading to dose reduction.

View Article and Find Full Text PDF

Background: Gold nanoclusters (AuNCs) are typically composed of several to tens of gold atoms which are stabilized with biomacromolecules such as bovine serum albumin (BSA). Au NCs fluoresces in the visible to near infrared region, in a size-dependent manner. AuNCs solutions have potential as fluorophore in a wide range of biomedical applications such as biodetection, biosensing and bioimaging in vitro and in vivo However, their stability and harsh condition of preparation limit their biomedical application.

View Article and Find Full Text PDF

Compared to normal cells, cancer cells have a higher level of reactive oxygen species (ROS) due to aberrant metabolism and disruption of redox homeostasis which drive their proliferation and promote progression and metastasis of cancers. The altered redox balance and biological difference between normal cells and cancer cells provide a basis for the development of anticancer agents which are able to generate pharmacological ROS insults to kill cancer cells preferentially. In this study, we report a new hybrid anticancer drug, termed OSamp, which undergoes esterase- and acid-catalyzed hydrolysis to deplete antioxidant glutathione (GSH) and generate ROS, simultaneously.

View Article and Find Full Text PDF

Peripheral artery disease (PAD) is a common circulatory disorder in which narrowed arteries limit blood flow to the lower extremity and affect millions of people worldwide. Therapeutic angiogenesis has emerged as a promising strategy to treat PAD patients because surgical intervention has been showing limited success. Leg muscles of PAD patients have significantly high level of ROS (reactive oxygen species) and the increased production of ROS is a key mechanism of initiation and progression of PAD.

View Article and Find Full Text PDF

Inhaling steroidal anti-inflammatory drugs is the most common treatment for airway inflammatory diseases such as asthma. However, frequent steroid administration causes adverse side effects. Therefore, the successful clinical translation of numerous steroidal drugs greatly needs pulmonary drug delivery systems which are formulated from biocompatible and non-immunogenic polymers.

View Article and Find Full Text PDF

Successful pulmonary drug delivery requires polymeric drug delivery systems which have excellent biocompatibility and fast degradation rates, when frequent administration is necessary. Here, we report a new family of fully biodegradable hydroxybenzyl alcohol (HBA)-incorporated polyoxalate (HPOX) as a novel therapeutics of airway inflammatory diseases. HPOX was designed to incorporate antioxidant and anti-inflammatory HBA and peroxalate ester linkages capable of reacting with hydrogen peroxide (H2O2) in its backbone.

View Article and Find Full Text PDF

Acute inflammatory diseases are one of major causes of death in the world and there is great need for developing drug delivery systems that can target drugs to macrophages and enhance their therapeutic efficacy. Poly(amino oxalate) (PAOX) is a new family of fully biodegradable polymer that possesses tertiary amine groups in its backbone and has rapid hydrolytic degradation. In this study, we developed PAOX particles as drug delivery systems for treating acute liver failure (ALF) by taking the advantages of the natural propensity of particulate drug delivery systems to localize to the mononuclear phagocyte system, particularly to liver macrophages.

View Article and Find Full Text PDF

Rapid endosomal escape of drug carriers is crucial to enhancing the efficacy of their macromolecular payload, especially proteins that are susceptible to lysosomal degradation. In this paper, we report poly(amino oxalate) (PAOX) as a new protein delivery system that is capable of disrupting endosomes and mediating cytosolic drug delivery. A cationic fully-biodegradable PAOX was synthesized from a one-step reaction of oxalyl chloride, cyclohexanedimethanol and piperazinediethanol.

View Article and Find Full Text PDF