Publications by authors named "Donghwan Ji"

Active materials are capable of responding to external stimuli, as observed in both natural and synthetic systems, from sensitive plants to temperature-responsive hydrogels. Extrusion-based 3D printing of soft active materials facilitates the fabrication of intricate geometries with spatially programmed compositions and architectures at various scales, further enhancing the functionality of materials. This Feature Article summarizes recent advances in extrusion-based 3D printing of active materials in both non-living (, synthetic) and living systems.

View Article and Find Full Text PDF

Achieving a simple yet sustainable printing technique with minimal instruments and energy remains challenging. Here, a facile and sustainable 3D printing technique is developed by utilizing a reversible salting-out effect. The salting-out effect induced by aqueous salt solutions lowers the phase transition temperature of poly(N-isopropylacrylamide) (PNIPAM) solutions to below 10 °C.

View Article and Find Full Text PDF

Many existing synthetic hydrogels are inappropriate for repetitive motions because of large hysteresis, and their mechanical properties in warm and saline physiological conditions remain understudied. In this study, a stretch-rate-independent, hysteresis-free, elastic, and tough nanocomposite hydrogel that can maintain its mechanical properties in phosphate-buffered saline of 37 °C similar to warm and saline conditions of the human body is developed. The strength, stiffness, and toughness of the hydrogel are simultaneously reinforced by biomimetic silica nanoparticles with a surface of embedded circular polyamine chains.

View Article and Find Full Text PDF

Current lithium-ion batteries (LIBs) rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity. The potential for environmental pollution and explosions resulting from battery damage or fracture is a critical concern. Water-based (aqueous) electrolytes have been receiving attention as an alternative to organic electrolytes.

View Article and Find Full Text PDF

Synthetic tough hydrogels have received attention because they could mimic the mechanical properties of natural hydrogels, such as muscle, ligament, tendon, and cartilage. Many recent studies suggest various approaches to enhance the mechanical properties of tough hydrogels. However, directly comparing each hydrogel property in different reports is challenging because various testing specimen shapes/sizes were employed, affecting the experimental mechanical property values.

View Article and Find Full Text PDF

For the practical use of synthetic hydrogels as artificial biological tissues, flexible electronics, and conductive membranes, achieving requirements for specific mechanical properties is one of the most prominent issues. Here, we demonstrate superstrong, superstiff, and conductive alginate hydrogels with densely interconnecting networks implemented via simple reconstructing processes, consisting of anisotropic densification of pre-gel and a subsequent ionic crosslinking with rehydration. The reconstructed hydrogel exhibits broad ranges of exceptional tensile strengths (8-57 MPa) and elastic moduli (94-1,290 MPa) depending on crosslinking ions.

View Article and Find Full Text PDF

Intensive studies on nacre-inspired composites with exceptional mechanical properties based on an organic/inorganic hierarchical layered structure have been conducted; however, integrating high strength, stiffness, and toughness for engineering materials still remains a challenge. We herein report the design and fabrication of polymer composites through a hydrogel-film casting method that allow for building uniformly layered organic/inorganic microstructure. Alginate (Alg) was used for an organic matrix, whose mechanical properties were controlled by Ca cross-linking toward the simultaneously strong, stiff, and tough resultant composite.

View Article and Find Full Text PDF

The fabrication of mechanically superior polymer composite films with controllable shapes on various scales is difficult. Despite recent research on polymer composites consisting of organic matrices and inorganic materials with layered structures, these films suffer from complex preparations and limited mechanical properties that do not have even integration of high strength, stiffness, and toughness. Herein, a hydrogel-film casting approach to achieve fabrication of simultaneously strong, stiff, and tough polymer composite films with well-defined microstructure, inspired from a layer-by-layer structure of nacre is reported.

View Article and Find Full Text PDF