Saline-alkali land is an important cultivated land reserve resource for tackling global climate change and ensuring food security, partly because it can store large amounts of carbon (C). However, it is unclear how saline-alkali land reclamation (converting saline-alkali land into cultivated land) affects soil C storage. We collected 189 adjacent pairs of salt-affected and cultivated soil samples (0-30 cm deep) from the Songnen Plain, eastern coastal area, Hetao Plain, and northwestern arid area in China.
View Article and Find Full Text PDFIntroduction: Ammonia oxidizing archaea (AOA) and ammonia oxidizing bacteria (AOB) have been proven to be key microorganisms driving the ammonia oxidation process. However, under different fertilization practices, there is a lack of research on the impact of interaction between predators and AOA or AOB on nitrogen cycling at the multi-trophic level.
Methods: In this study, a network-oriented microscopic culture experiment was established based on four different long-term fertilization practices soils.
Microbial carbon (C) use efficiency (CUE) plays a key role in soil C storage. The predation of protists on bacteria and fungi has potential impacts on the global C cycle. However, under conservation tillage conditions, the effects of multitrophic interactions on soil microbial CUE are still unclear.
View Article and Find Full Text PDFIron oxides supposedly provide physicochemical protection for soil organic carbon (SOC) under anoxic conditions. Likewise, biochar can modulate the composition of soil microbial communities. However, how Fe oxides and microbial communities influence the fate of SOC with biochar amendment remains unresolved, especially the effect of the bacteria-virus interaction on SOC dynamics.
View Article and Find Full Text PDFStable soil organic carbon (SOC) formation in coastal saline soils is important to improve arable land quality and mitigate greenhouse gas emissions. However, how microbial life-history strategies and metabolic traits regulate SOC turnover in coastal saline soils remains unknown. Here, we investigated the effects of microbial life history strategy tradeoffs on microbial carbon use efficiency (CUE) and microbial-derived SOC formation using metagenomic sequencing technology in different salinity soils.
View Article and Find Full Text PDFIt is well known that nitrogen (N) fertilizer input is required to improve crop productivity, but we lack a comprehensive understanding of how elevated N input changes the formation of soil acid hydrolyzable nitrogen (AHN) by adjusting the most vital microbial taxa of keystone species of microbial communities and enzyme activities. A 15-year field experiment comprising four levels of inorganic N fertilization was conducted to identify the most important bacterial and fungal taxa of the keystone species derived from cooccurrence networks as well as the vital enzyme activities at the bell mouth and maturity stages. Long-term N fertilization significantly increased the levels of AHN along with its four fractions, including amino acid N (AAN), ammonium N (AN), amino sugar N (ASN), and hydrolysable unidentified N (HUN), by 30.
View Article and Find Full Text PDFSoil microbial use efficiency of straw carbon (C), which is the proportion of straw-C microbes assimilate into new biosynthetic material relative to C lost out of the system as CO, is critical in increasing soil organic C (SOC) content, and hence maintaining soil fertility and productivity. However, the effect of chemical structures of the organic amendments (OAs) on the microbial use efficiency of straw-C remains unclear. The effect of the chemical structure of the OAs on microbial use efficiency of straw-C was elucidated by a combination of C-straw labeling with high-throughput sequencing and pyrolysis-GC/MS.
View Article and Find Full Text PDFNuclear magnetic resonance (NMR) technology has been applied in soil science due to the characte-ristics of high efficiency, rapidity, no damage to soil structure, and harmlessness to the human body. However, the effect of the presence of paramagnetic materials in soils on the characteristics of NMR signals was still unclear. In this study, we investigated the effects of paramagnetic material on the low field nuclear magnetic (LF-NMR) signals and soil water content measurement in soils with different texture.
View Article and Find Full Text PDFLarge-scale mining has greatly damaged vegetation and caused ecological degradation in the semi-arid area in China. It is urgent to restore the vegetation to solve the deteriorating ecological and environmental problems in mining area. How to reclaim soils for effectively storing and utilizing precipitation is the primary issue for vegetation restoration in the area.
View Article and Find Full Text PDFIn this study, high-throughput sequencing technology was used to analyse the diversity and composition of fungal and bacterial communities in continuous cropping soil of Chinese chives. The soil nutrient was also measured to explore the rationality of current fertilization management. These results can provide a basis for the prevention and control of the continuous cropping obstacles of Chinese chives and further scientific management.
View Article and Find Full Text PDFSuccession and metabolism functions of bacterial communities were determined in maize straw composting with earthworm casts and zeolite addition by using high-throughput sequencing, Biolog and PICRUSt. Results showed that earthworm casts and zeolite addition increased the temperature, decreased NH contents and affected bacterial community structure. The relative abundances of Firmicutes and Betaproteobacteria increased with earthworm casts and zeolite addition in the late stage.
View Article and Find Full Text PDFFront Plant Sci
November 2018
Potassium (K) distribution is horizontally heterogeneous under the conservation agriculture approach of no-till with strip fertilization. The root foraging strategy of wheat for K heterogeneity is poorly understood. In this study, WinRHIZO, microarray, Non-invasive Micro-test Technology (NMT) and a split-root system were performed to investigate root morphology, gene expression profiling and fluxes of K and O under K heterogeneity and homogeneity conditions.
View Article and Find Full Text PDFPotassium (K(+)) deficiency as a common abiotic stress can inhibit the growth of plants and thus reduce the agricultural yields. Nevertheless, scarcely any development has been promoted in wheat transcriptional changes under K(+) deficiency. Here we investigated root transcriptional changes in two wheat genotypes, namely, low-K(+) tolerant "Tongzhou916" and low-K(+) susceptible "Shiluan02-1".
View Article and Find Full Text PDF