Publications by authors named "Dongguo Li"

Objective: The prognosis of glioblastoma is poor, and therapy-resistance is largely attributed to intratumor hypoxia. Hyperbaric oxygen (HBO) effectively alleviates hypoxia. However, the sole role of HBO in glioblastoma remains controversial.

View Article and Find Full Text PDF

The interrelation and complementary nature of multi-omics data can provide valuable insights into the intricate molecular mechanisms underlying diseases. However, challenges such as limited sample size, high data dimensionality and differences in omics modalities pose significant obstacles to fully harnessing the potential of these data. The prior knowledge such as gene regulatory network and pathway information harbors useful gene-gene interaction and gene functional module information.

View Article and Find Full Text PDF

Objective: To delve deeply into the dynamic trajectories of cell subpopulations and the communication network among immune cell subgroups during the malignant progression of glioblastoma (GBM), and to endeavor to unearth key risk biomarkers in the GBM malignancy progression, so as to provide a more profound understanding for the treatment and prognosis of this disease by integrating transcriptomic data and clinical information of the GBM patients.

Methods: Utilizing single-cell sequencing data analysis, we constructed a cell subgroup atlas during the malignant progression of GBM. The Monocle2 tool was employed to build dynamic progression trajectories of the tumor cell subgroups in GBM.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) for quantitative analysis is challenging owing to the unstable enhanced effect. However, it can be improved by combining it with chemometrics. In this study, we established a quantitative analysis method for phenytoin sodium (PS) based on partial least-squares (PLS) and linear regression (LR) models combined with SERS.

View Article and Find Full Text PDF

Glioblastoma (GBM) is characterized by extensive genetic and phenotypic heterogeneity. However, it remains unexplored primarily how CpG island methylation abnormalities in promoter mediate glioblastoma typing. First, we presented a multi-omics scale map between glioblastoma sample clusters constructed based on promoter CpG island (PCGI) methylation-driven genes, using datasets including methylation profiles, expression profiles, and single-cell sequencing data from multiple highly annotated public clinical cohorts.

View Article and Find Full Text PDF

Long non-coding RNA (lncRNA) regulated by abnormal DNA methylation (ADM-lncRNA) emerges as a biomarker for cancer diagnosis and treatment. This study comprehensively described the methylation patterns of lncRNA in pan-cancer using the cancer data set in The Cancer Genome Atlas (TCGA). Based on the cancer heterogeneity of ADM-lncRNA in pan-cancer, we constructed a co-expression network of pan-cancer ADM-lncRNA (pADM-lncRNA) in 10 cancers, highlighting the combined action mode of abnormal DNA methylation, and indicating the internal connection among different cancers.

View Article and Find Full Text PDF

Anion-exchange membrane electrolyzer cells (AEMECs) are one of the most promising technologies for carbon-neutral hydrogen production. Over the past few years, the performance and durability of AEMECs have substantially improved. Herein, we report an engineered liquid/gas diffusion layer (LGDL) with tunable pore morphologies that enables the high performance of AEMECs.

View Article and Find Full Text PDF

Background: Glioblastoma multiforme (GBM) is the most common and aggressive primary malignant brain tumor with grim prognosis. Aberrant DNA methylation is an epigenetic mechanism that promotes GBM carcinogenesis, while the function of DNA methylation at enhancer regions in GBM remains poorly described.

Results: We integrated multi-omics data to identify differential methylation enhancer region (DMER)-genes and revealed global enhancer hypomethylation in GBM.

View Article and Find Full Text PDF

Hupehenenine is a novel isosteroid alkaloid that was first isolated from Bulbus Hupehensis Fritillariae. The inhibitory proliferation effect of hupehenenine and its three related alkaloid derivatives, including o-caproyl-hupehenenine, o-(2-furanoyl)-hupehenenine, and Δ -isopeimine on human lung cancer cell line, human chronic myeloid leukemia cell line, and human thyroid duct cancer cell line in vitro, has been identified. This study first developed a sensitive HPLC-MS/MS method for the simultaneous quantification of hupehenenine and three alkaloid derivatives in rat plasma and tissues.

View Article and Find Full Text PDF

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

View Article and Find Full Text PDF

A remaining challenge for the deployment of proton-exchange membrane fuel cells is the limited durability of platinum (Pt) nanoscale materials that operate at high voltages during the cathodic oxygen reduction reaction. In this work, atomic-scale insight into well-defined single-crystalline, thin-film and nanoscale surfaces exposed Pt dissolution trends that governed the design and synthesis of durable materials. A newly defined metric, intrinsic dissolution, is essential to understanding the correlation between the measured Pt loss, surface structure, size and ratio of Pt nanoparticles in a carbon (C) support.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a malignant brain tumor associated with high mortality. Long non‑coding RNAs (lncRNAs) are increasingly being recognized as its modulators. However, it remains mostly unexplored how lncRNAs are mediated by DNA methylation in GBM.

View Article and Find Full Text PDF

Background: Enhanced External Counterpulsation (EECP) can chronically relieve ischemic chest pain and improve the prognosis of coronary heart disease (CHD). Despite its role in mitigating heart complications, EECP and the mechanisms behind its therapeutic nature, such as its effects on blood flow hemodynamics, are still not fully understood. This study aims to elucidate the effect of EECP on significant hemodynamic parameters in the coronary arterial tree.

View Article and Find Full Text PDF

Background: Ischemic Stroke (IS) is a major disease which greatly threatens human health. Recent studies showed sex-specific outcomes and mechanisms of cerebral ischemic stroke. This study aimed to identify the key changes of gene expression between male and female IS in humans.

View Article and Find Full Text PDF

Interactions between a catalyst and electrolyte have paramount importance for the performance of electrochemical devices. Here, we present the cation-hydroxide-water coadsorption on the Pt surface by a rotating disk electrode and neutron reflectometry. The rotating disk electrode experiments show that the current density of Pt rapidly dropped at hydrogen oxidation potentials due to tetramethylammonium hydroxide (TMAOH)-water coadsorption.

View Article and Find Full Text PDF

Stroke causes significant morbidity and mortality worldwide, for which no satisfactory preventive option currently exists. Hypoxic preconditioning (HPC) is a protective strategy for cerebral ischemic stroke. To this end, we have identified, Conventional protein kinase C (cPKC)BetaII to play an important role in HPC.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most malignant brain tumor with a poor prognosis. A molecular level classification of GBM can provide insight into accurate patient-specific treatment. Competitive endogenous RNAs (ceRNAs), such as long non-coding RNAs (lncRNAs), play an essential role in the development of tumors and are associated with survival.

View Article and Find Full Text PDF

The durability of alkaline anion exchange membrane (AEM) electrolyzers is a critical requirement for implementing this technology in cost-effective hydrogen production. Here, we report that the electrochemical oxidation of the adsorbed phenyl group (found in the ionomer) on oxygen evolution catalysts produces phenol, which may cause performance deterioration in AEM electrolyzers. In-line H NMR kinetic analyses of phenyl oxidation in a model organic cation electrolyte shows that catalyst type significantly impacts the phenyl oxidation rate at an oxygen evolution potential.

View Article and Find Full Text PDF

Low-cost transition metal oxides are actively explored as alternative materials to precious metal-based electrocatalysts for the challenging multistep oxygen evolution reaction (OER). We utilized the Kirkendall effect allowing the formation of hollow polycrystalline, highly disordered nanoparticles (NPs) to synthesize highly active binary metal oxide OER electrocatalysts in alkali media. Two synthetic strategies were applied to achieve compositional control in binary transition metal oxide hollow NPs.

View Article and Find Full Text PDF

Acute acquired comitant esotropia (AACE) is an unusual presentation of esotropia that occurs after infancy. This study was aimed to study the clinical features and the differences between children and adult patients with AACE in the Chinese populations.This was a retrospective analysis of patients diagnosed with AACE over 4 years; 69 patients (25 females and 44 males) were identified.

View Article and Find Full Text PDF

Platinum-based alloys are known to demonstrate advanced properties in electrochemical reactions that are relevant for proton exchange membrane fuel cells and electrolyzers. Further development of Pt alloy electrocatalysts relies on the design of architectures with highly active surfaces and optimized utilization of the expensive element, Pt. Here, we show that the three-dimensional Pt anisotropy of Pt-Ni rhombic dodecahedra can be tuned by controlling the ratio between Pt and Ni precursors such that either a completely hollow nanoframe or a new architecture, the excavated nanoframe, can be obtained.

View Article and Find Full Text PDF

The search for active, stable, and cost-efficient electrocatalysts for hydrogen production via water splitting could make a substantial impact on energy technologies that do not rely on fossil fuels. Here we report the synthesis of rhodium phosphide electrocatalyst with low metal loading in the form of nanocubes (NCs) dispersed in high-surface-area carbon (RhP/C) by a facile solvo-thermal approach. The RhP/C NCs exhibit remarkable performance for hydrogen evolution reaction and oxygen evolution reaction compared to Rh/C and Pt/C catalysts.

View Article and Find Full Text PDF

Porous matrix stiffness modulates response to targeted therapy. Poroelastic behavior within porous matrix may modulate the molecule events in cell-matrix and cell-cell interaction like the complex formation of human epidermal growth factor receptor-2 (HER2)-Src-α6β4 integrin, influencing the targeted therapy with lapatinib.

View Article and Find Full Text PDF

We present a brief summary on the most recent progress in the design of catalysts for electrochemical reduction of oxygen. The main challenge in the wide spread of fuel cell technology is to lower the content of, or even eliminate, Pt and other precious metals in catalysts without sacrificing their performance. Pt-based nanosized catalysts with novel and refined architectures continue to dominate in catalytic performance, and formation of Pt-skin-like surfaces is key to achieving the highest values in activity.

View Article and Find Full Text PDF

Identifying effective targets induced by ECM stiffness is of critical importance for treating metastatic cancer diseases, which are followed by changes in the mechanical microenvironment in cancer cells. In this study, polyacrylamide hydrogel substrates with different stiffnesses were prepared and mRNA microarrays were performed to analyze the mRNA expression profiles in breast cancer cell line SK-BR-3 grown on different stiffness substrates. The results indicated that the expressions of 1831 genes were changed significantly in the SK-BR-3 cells on the different stiffness substrates.

View Article and Find Full Text PDF