Understanding the mechanisms by which the geomorphic structures affect habitat invasibility by mediating various abiotic and biotic factors is essential for predicting whether these geomorphic structures may provide spatial windows of opportunity to facilitate range-expansion of invasive species in salt marshes. Many studies have linked geomorphic landscape features such as tidal channels to invasion by exotic plants, but the role of tidal channel meanders (i.e.
View Article and Find Full Text PDFCoastal sediments, recognized as a major sink for microplastics (MPs), are subject to frequent physical disturbances, such as wave disturbance and associated sediment dynamics. Yet it remains poorly understood how wave disturbance regulates MPs accumulation in such a dynamic environment. Here, we examined the effects of waves and their interactions with material density and burial depth on the retention of MPs in coastal sediments, through manipulative experiments in a mangrove habitat along the coast of South China.
View Article and Find Full Text PDFCoastal wetlands have been enclosed by thousands of kilometers of seawalls in China to obtain extra land for rapid socio-economic development in the coastal region. Although understanding seawall-induced impacts on delta wetlands and their ecosystem can provide valuable decision-making information to support coastal management, quantifying and measuring long-term, cumulative ecological impacts of harden seawall under sea level rise (SLR) remains a vital research gap. In this study, by combining the land-use transformation trajectory analysis, ecosystem services assessment, and the SLAMM (Sea Level Affecting Marshes Model), we have explored the seawall-induced effects on temporal-spatial dynamics of tidal wetlands and the Coastal Blue Carbon storage (CBCs) in the Yellow River Delta (YRD) under the SLR by 2050 and 2100.
View Article and Find Full Text PDFAlgae-dominance in seagrass beds has been well recognized, however, the competitive relationship between seagrass and macroalgae along land-sea gradients and their ecological effects has received little attention. In this study, a field survey was conducted at the Yellow River Estuary to investigate the effects of macroalgal proliferation on seagrass and macrobenthic invertebrate communities. Our results suggested that strong competitive interaction existed between the two primary producers, and the positive or negative effects of macroalgae on seagrass growth varied along land-sea gradient.
View Article and Find Full Text PDFBiogeomorphological processes and structures (BPS) can affect plant growth and community structure and promote landscape complexity in ecosystems. However, there is a lack of understanding of how BPS facilitates seedling establishment and distribution of annual plants and promotes the success of coastal restoration. We studied the relationships between seedling establishment of a native annual plant species (Suaeda salsa) and BPS resulting from crabs and plants in a middle elevation salt marsh with moderate tides (where inhabited generally high density of plants and crabs) in the Yellow River Delta of China.
View Article and Find Full Text PDFDespite increasing concerns about the global threat of cordgrass (S. alterniflora) expansion and the interest in its invasion mechanisms, there is not yet a general understanding of the mechanistic processes underlying the interaction between cordgrass invasion and geomorphic structures such as tidal channels. This study elucidated the effects of the hydrodynamic disturbance of tidal channels on initial seedling establishment of cordgrass in the margins of two different types of tidal channels (i.
View Article and Find Full Text PDFBackground And Aims: Ecosystem-based flood defence including salt-marsh as a key component is increasingly applied worldwide due to its multifunctionality and cost-effectiveness. While numerous experiments have explored the wave-attenuation effects of salt-marsh plants critical to flood protection, little is known about the physiological and biochemical responses of these species to continuous wave exposure.
Methods: To address this knowledge gap, we developed a shallow-water wave simulator to expose individual Spartina alterniflora plants to waves in a greenhouse for 8 weeks.
A major challenge in managing natural populations in ecosystems is understanding and predicting the complexity and consequences of population dispersal. Although many studies have documented the importance of conspecific density and habitat quality in the dispersal process, we lack an understanding of how to integrate these factors in determining the spatial dynamics of populations or how habitat quality can mediate density-dependent dispersal. In this study, we propose a Habitat-mediated, Density-dependent, Spatial Population Dynamics model (HD-SPDM), in which we combined a Habitat Suitability Index (HSI) with a migration function, to explore the emergent effects of habitat mediated, density-dependent dispersal strategies on the spatial dynamics of a population.
View Article and Find Full Text PDFPurpose: Autism spectrum disorder (ASD) is a neurological and developmental disorder that begins early in childhood and lasts throughout one's life. Early diagnosis is essential for ASD since early treatment can enable children with ASD to make significant gains in language and social skills, but remains challenging since there are currently no specific biomarkers of ASD. This study is aimed to identify serum biomarkers for ASD.
View Article and Find Full Text PDFExceptions to the generality of the stress-gradient hypothesis (SGH) may be reconciled by considering species-specific traits and stress tolerance strategies. Studies have tested stress tolerance and competitive ability in mediating interaction outcomes, but few have incorporated this to predict how species interactions shift between competition and facilitation along stress gradients. We used field surveys, salt tolerance and competition experiments to develop a predictive model interspecific interaction shifts across salinity stress gradients.
View Article and Find Full Text PDFWe investigated the speciation of trace metals and their ecological risks to macrobenthic communities in a recovering coastal wetland of China's Yellow River Delta during the freshwater release project. We established 16 sampling sites in three restoration areas and one intertidal reference area, and collected sediments and macrobenthos four times from 2014 to 2015. The instability index for the trace metals showed a moderate risk for Mn and a high risk for Cd.
View Article and Find Full Text PDFThe identification of disease genes is very important not only to provide greater understanding of gene function and cellular mechanisms which drive human disease, but also to enhance human disease diagnosis and treatment. Recently, high-throughput techniques have been applied to detect dozens or even hundreds of candidate genes. However, experimental approaches to validate the many candidates are usually time-consuming, tedious and expensive, and sometimes lack reproducibility.
View Article and Find Full Text PDFBackground: This study was undertaken to determine the effect of thimerosal on the neurodevelopment of premature rats.
Methods: Thimerosal was injected into premature SD rats at a dose of 32.8, 65.