Publications by authors named "Dongcheng Lin"

Article Synopsis
  • Efficient conduction of hydroxide ions (OH) in anion exchange membranes (AEMs) is crucial for improving sustainable technologies like water electrolysis and fuel cells.
  • Researchers developed innovative AEMs with rigid, heteroatom-free micropores engineered for fast and stable ionic transport, resulting in a significant increase in conductivity and durability.
  • These new membranes not only improve energy efficiency and lifespan, but also allow for the use of less expensive catalysts, making them promising for future advancements in electrochemical applications.
View Article and Find Full Text PDF

Developing a high-efficiency and stable anode catalyst layer (CL) is crucial for promoting the practical applications of anion exchange membrane (AEM) water electrolyzers. Herein, a hierarchical nanosheet array composed of oxygen vacancy-enriched CoCrO nanosheets and dispersed FeNi layered double hydroxide (LDH) is proposed to regulate the electronic structure and increase the electrical conductivity for improving the intrinsic activity of the oxygen evolution reaction (OER). The CoCrO/NiFe LDH electrodes require an overpotential of 205 mV to achieve a current density of 100 mA cm, and they exhibit long-term stability at 1000 mA cm over 7000 h.

View Article and Find Full Text PDF

The electrochemical switching ion exchange (ESIX) technique has been widely used for the separation and recovery of radioactive cesium ions (Cs) from wastewater. In this study, a series of BiOX (X = F, Cl, Br, I) materials were first evaluated for their absorption properties to Cs through density functional theory (DFT) calculations. The calculations predict that BiOBr has the best absorption performance among the four materials, BiOF, BiOCl, BiOBr, and BiOI, due to its high absorption energy and low ion migration energy barrier to Cs.

View Article and Find Full Text PDF