Publications by authors named "Dongchan Jeong"

The influence of static disorder on a quantum phase transition (QPT) is a fundamental issue in condensed matter physics. As a prototypical example of a disorder-tuned QPT, the superconductor-insulator transition (SIT) has been investigated intensively over the past three decades, but as yet without a general consensus on its nature. A key element is good control of disorder.

View Article and Find Full Text PDF

We report on gate-tuned locality of superconductivity-induced phase-coherent magnetoconductance oscillations in a graphene-based Andreev interferometer, consisting of a T-shaped graphene bar in contact with a superconducting Al loop. The conductance oscillations arose from the flux change through the superconducting Al loop, with gate-dependent Fraunhofer-type modulation of the envelope. We confirm a transitional change in the character of the pair coherence, between local and nonlocal, in the same device as the effective length-to-width ratio of the device was modulated by tuning the pair-coherence length ξT in the graphene layer.

View Article and Find Full Text PDF

In a conventional Josephson junction of graphene, the supercurrent is not turned off even at the charge neutrality point, impeding further development of superconducting quantum information devices based on graphene. Here we fabricate bipolar Josephson junctions of graphene, in which a p-n potential barrier is formed in graphene with two closely spaced superconducting contacts, and realize supercurrent ON/OFF states using electrostatic gating only. The bipolar Josephson junctions of graphene also show fully gate-driven macroscopic quantum tunnelling behaviour of Josephson phase particles in a potential well, where the confinement energy is gate tuneable.

View Article and Find Full Text PDF

Stochastic switching-current distribution in a graphene-based Josephson junction exhibits a crossover from the classical to quantum regime, revealing the macroscopic quantum tunneling of a Josephson phase particle at low temperatures. Microwave spectroscopy measurements indicate a multiphoton absorption process occurring via discrete energy levels in washboard potential well. The crossover temperature for macroscopic quantum tunneling and the quantized level spacing are controlled with the gate voltage, implying its potential application to gate-tunable superconducting quantum bits.

View Article and Find Full Text PDF