Publications by authors named "Dongbo Shi"

Objective: This study aims to investigate the role of BRAF-activated long non-coding RNA (BANCR) in papillary thyroid carcinoma (PTC) progression and its association with clinical and molecular characteristics.

Methods: Sixteen PTC patients were stratified into four groups (PTC, HT, HT-LNM, and PTC-LNM) based on cervical lymph node metastasis and concurrent Hashimoto's thyroiditis (HT) to explore BANCR expression and its relationship with immune-related factors and tumor microenvironment (TME). Functional assays, including Transwell invasion, colony formation, and CCK8 were performed to evaluate the biological effects of BANCR in PTC cell lines.

View Article and Find Full Text PDF

Single-cell and single-nucleus RNA-sequencing technologies capture the expression of plant genes at an unprecedented resolution. Therefore, these technologies are gaining traction in plant molecular and developmental biology for elucidating the transcriptional changes across cell types in a specific tissue or organ, upon treatments, in response to biotic and abiotic stresses, or between genotypes. Despite the rapidly accelerating use of these technologies, collective and standardized experimental and analytical procedures to support the acquisition of high-quality data sets are still missing.

View Article and Find Full Text PDF

Nuclei contain essential information for cell states, including chromatin and RNA profiles - features which are nowadays accessible using high-throughput sequencing applications. Here, we describe analytical pipelines including nucleus isolation from differentiated xylem tissues by fluorescence-activated nucleus sorting (FANS), as well as subsequent SMART-seq2-based transcriptome profiling and assay for transposase-accessible chromatin (ATAC)-seq-based chromatin analysis. Combined with tissue-specific expression of nuclear fluorescent reporters, these pipelines allow obtaining tissue-specific data on gene expression and on chromatin structure and are applicable for a large spectrum of cell types, tissues, and organs.

View Article and Find Full Text PDF

Spatial specificity of cell fate decisions is central for organismal development. The phloem tissue mediates long-distance transport of energy metabolites along plant bodies and is characterized by an exceptional degree of cellular specialization. How a phloem-specific developmental program is implemented is, however, unknown.

View Article and Find Full Text PDF

In this study, we examined China's Young Thousand Talents (YTT) program and evaluated its effectiveness in recruiting elite expatriate scientists and in nurturing the returnee scientists' productivity. We find that YTT scientists are generally of high caliber in research but, as a group, fall below the top category in pre-return productivity. We further find that YTT scientists are associated with a post-return publication gain across journal-quality tiers.

View Article and Find Full Text PDF

Precise coordination of cell fate decisions is a hallmark of multicellular organisms. Especially in tissues with non-stereotypic anatomies, dynamic communication between developing cells is vital for ensuring functional tissue organization. Radial plant growth is driven by a plant stem cell niche known as vascular cambium, usually strictly producing secondary xylem (wood) inward and secondary phloem (bast) outward, two important structures serving as much-needed CO depositories and building materials.

View Article and Find Full Text PDF

Plant secondary growth, which is the basis of wood formation, includes the production of secondary xylem, which is derived from meristematic cambium cells embedded in vascular tissue. Here, we identified an important role for the Arabidopsis thaliana (Arabidopsis) AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED 15 (AHL15) transcriptional regulator in controlling vascular cambium activity. The limited secondary xylem development in inflorescence stems of herbaceous Arabidopsis plants was significantly reduced in ahl15 loss-of-function mutants, whereas constitutive or vascular meristem-specific AHL15 overexpression produced woody inflorescence stems.

View Article and Find Full Text PDF

Strigolactones (SLs) are a class of plant hormones that mediate biotic interactions and modulate developmental programs in response to endogenous and exogenous stimuli. However, a comprehensive view on the spatio-temporal pattern of SL signaling has not been established, and tools for a systematic in planta analysis do not exist. Here, we present Strigo-D2, a genetically encoded ratiometric SL signaling sensor that enables the examination of SL signaling distribution at cellular resolution and is capable of rapid response to altered SL levels in intact Arabidopsis (Arabidopsis thaliana) plants.

View Article and Find Full Text PDF

Genome-wide gene expression maps with a high spatial resolution have substantially accelerated plant molecular science. However, the number of characterized tissues and growth stages is still small due to the limited accessibility of most tissues for protoplast isolation. Here, we provide gene expression profiles of the mature inflorescence stem of Arabidopsis thaliana covering a comprehensive set of distinct tissues.

View Article and Find Full Text PDF

The molecular mechanisms by which cilia orientation is coordinated within and between multi-ciliated cells (MCCs) are not fully understood. In the mouse oviduct, MCCs exhibit a characteristic basal body (BB) orientation and microtubule gradient along the tissue axis. The intracellular polarities were moderately maintained in cells lacking CELSR1 (cadherin EGF LAG seven-pass G-type receptor 1), a planar cell polarity (PCP) factor involved in tissue polarity regulation, although the intercellular coordination of the polarities was disrupted.

View Article and Find Full Text PDF

As a pre-requisite for constant growth, plants produce vascular tissues at different sites within their post-embryonic body. Interestingly, the formation of vascular tissues during longitudinal and radial expansion of shoot and root axes differs fundamentally with respect to its anatomical configuration. This raises the question to which level regulatory mechanisms of vascular tissue formation are shared throughout plant development.

View Article and Find Full Text PDF

In this study, we aimed to test the effects of treadmill running on depression induced olfactory functions and OB neurogenesis in depression model. Depression model was created with chronic unpredictable mild stress (CUMS) and treadmill running was performed as the antidepressant treatment. Behavioral results showed that treadmill running not only attenuated the depression mood but also improved the olfactory discrimination and sensitivity in CUMS depression model.

View Article and Find Full Text PDF

Organs and tissues in multi-cellular organisms exhibit various morphologies. Tubular organs have multi-scale morphological features which are closely related to their functions. Here we discuss morphogenesis and the mechanical functions of the vertebrate oviduct in the female reproductive tract, also known as the fallopian tube.

View Article and Find Full Text PDF

A reduced rate of stem cell division is considered a widespread feature which ensures the integrity of genetic information during somatic development of plants and animals. Radial growth of plant shoots and roots is a stem cell-driven process that is fundamental for the mechanical and physiological support of enlarging plant bodies. In most dicotyledonous species, the underlying stem cell niche, the cambium, generates xylem inwards and phloem outwards.

View Article and Find Full Text PDF

The Wnt signaling pathway can be grouped into two classes, the β-catenin-dependent and β-catenin-independent pathways. Wnt5a signaling through a β-catenin-independent pathway promotes microtubule (MT) remodeling during cell-substrate adhesion, cell migration, and planar cell polarity formation. Although Wnt5a signaling and MT remodeling are known to form an interdependent regulatory loop, the underlying mechanism remains unknown.

View Article and Find Full Text PDF

Humanities and Social Sciences (HSS) increasingly absorb knowledge from Hard Sciences, i.e., Science, Technology, Agriculture and Medicine (STAM), as testified by a growing number of citations.

View Article and Find Full Text PDF

Polarization of node cells along the anterior-posterior axis of mouse embryos is responsible for left-right symmetry breaking. How node cells become polarized has remained unknown, however. Wnt5a and Wnt5b are expressed posteriorly relative to the node, whereas genes for Sfrp inhibitors of Wnt signaling are expressed anteriorly.

View Article and Find Full Text PDF
Article Synopsis
  • Embryonic development shapes the body's structure, but much cell production happens after this stage in differentiated organs.
  • This text compares postembryonic growth in plants and the fish retina, highlighting how both use stem cell systems for radial growth.
  • Despite being from different evolutionary backgrounds, these organisms show similar regulatory patterns, implying that there are efficient solutions to shared developmental challenges.
View Article and Find Full Text PDF

Epithelia exhibit various three-dimensional morphologies linked to organ function in animals. However, the mechanisms of three-dimensional morphogenesis remain elusive. The luminal epithelium of the mouse oviduct forms well-aligned straight folds along the longitudinal direction of the tubes.

View Article and Find Full Text PDF

The planar cell polarity (PCP) pathway regulates morphogenesis in various organs. The polarized localization is a key feature of core PCP factors for orchestrating cell polarity in an epithelial sheet. Several studies using Drosophila melanogaster have investigated the mechanism of the polarized localization.

View Article and Find Full Text PDF

The oviduct is an important organ in reproduction where fertilization occurs, and through which the fertilized eggs are carried to the uterus in mammals. This organ is highly polarized, where the epithelium forms longitudinal folds along the ovary-uterus axis, and the epithelial multicilia beat towards the uterus to transport the ovulated ova. Here, we analyzed the postnatal development of mouse oviduct and report that multilevel polarities of the oviduct are regulated by a planar cell polarity (PCP) gene, Celsr1.

View Article and Find Full Text PDF

Mammalian embryos develop in coordination with extraembryonic tissues, which support embryonic development by implanting embryos into the uterus, supplying nutrition, providing a confined niche, and also providing patterning signals to embryos. Here, we show that in mouse embryos, the expansion of the amniotic cavity (AC), which is formed between embryonic and extraembryonic tissues, provides the mechanical forces required for a type of morphogenetic movement of the notochord known as convergent extension (CE) in which the cells converge to the midline and the tissue elongates along the antero-posterior (AP) axis. The notochord is stretched along the AP axis, and the expansion of the AC is required for CE.

View Article and Find Full Text PDF

Background: Planar cell polarity (PCP) originally referred to the coordination of global organ axes and individual cell polarity within the plane of the epithelium. More recently, it has been accepted that pertinent PCP regulators play essential roles not only in epithelial sheets, but also in various rearranging cells.

Results: We identified pepsinogen-like (pcl) as a new planar polarity gene, using Drosophila wing epidermis as a model.

View Article and Find Full Text PDF

Planar cell polarity (PCP) signaling is involved in many polarized cell behaviors. In this issue of Developmental Cell, Tatin et al. (2013) show that the atypical cadherin Celsr1 is transiently localized to cellular protrusions in lymphatic endothelial cells and acts to orient valve-forming cells perpendicular to the vessel axis.

View Article and Find Full Text PDF

The oviduct is important in reproduction where fertilization occurs, and the fertilized eggs are conveyed to the uterus. Multi-ciliated cells of the oviductal epithelium and muscle contractions are believed to generate this unidirectional flow. Although there are many studies in human oviducts, there are few reports on mouse oviductal ciliary movements where we can dissect underlying genetic programs.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionucn69a8bmprn71cgv9eufoggsb81d6h6): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once