Publications by authors named "Dongbing Cui"

As a typical dibenzylisoquinoline alkaloid, tetrandrine (TET) is clinically used for the treatment of silicosis, inflammatory pulmonary, and cardiovascular diseases in China. Recent investigations have demonstrated the outstanding anticancer activity of this structure, but its poor aqueous solubility severely restricts its further development. Herein, a series of its 14--amino acid-substituted derivatives with improved anticancer effects and aqueous solubility were designed and synthesized.

View Article and Find Full Text PDF

A series of 2,4-diamino pyrimidine (DAPY) derivatives were designed, synthesized, and evaluated as inhibitors of focal adhesion kinase (FAK) with antitumor and anti-angiogenesis activities. Most compounds effectively suppressed the enzymatic activities of FAK, and the ICs of 11b and 12f were 2.75 and 1.

View Article and Find Full Text PDF

Interleukin-15 (IL-15) can promote both innate and adaptive immune reactions by stimulating CD8/CD4 T cells and natural killer cells (NK) while showing no effect in activating T-regulatory (Treg) cells or inducing activation-associated death among effector T cells and NK cells. Thus, IL-15 is considered as one of the most promising molecules for antitumor immune therapy. To improve the drug-like properties of natural IL-15, we create an IL-15-based molecule, named P22339, with the following characteristics: 1) building a complex of IL-15 and the Sushi domain of IL-15 receptor α chain to enhance the agonist activity of IL-15 via transpresentation; 2) through a rational structure-based design, creating a disulfide bond linking the IL-15/Sushi domain complex with an IgG1 Fc to augment its half-life.

View Article and Find Full Text PDF

Trastuzumab-MCC-DM1 (T-DM1) is an antibody-drug conjugate (ADC) that consists of a monoclonal antibody (mAb) trastuzumab non-cleavably linked to a cytotoxic drug DM1. During production, the DM1 agents were conjugated to the lysine residues of the mAb in a non-specific manner, yielding a heterogeneous mixture of ADC molecules that differ with respect to both the number and the conjugation sites of DM1 per mAb molecule. Since drug conjugation sites of ADC can significantly impact properties such as stability and pharmacokinetic behaviors, a rapid and reliable approach for conjugation site analysis of ADCs is highly demanded.

View Article and Find Full Text PDF

The discovery of unique substrates is important for developing potential applications of enzymes. However, the experimental procedures for substrate identification are laborious, time-consuming, and expensive. Although in silico structure-based approaches show great promise, recent extensive studies have shown that these approaches remain a formidable challenge for current biocomputational methodologies.

View Article and Find Full Text PDF

Coenzyme engineering, especially for altered coenzyme specificity, has been a research hotspot for more than a decade. In the present study, a novel computational strategy that enhances the hydrogen-bond interaction between an enzyme and a coenzyme was developed and utilized to alter the coenzyme preference. This novel computational strategy only required the structure of the target enzyme.

View Article and Find Full Text PDF

An aldo-keto reductase AKR5C3 from Gluconobacter oxydans (designated as Gox0644) is a useful enzyme with various substrates, including aldehydes, diacetyl, keto esters, and α-ketocarbonyl compounds. The crystal structures of AKR5C3 in apoform in complex with NADPH and the D53A mutant (AKR5C3(-D53A) ) in complex with NADPH are presented herein. Structure comparison and site-directed mutagenesis combined with biochemical kinetics analysis reveal that the conserved Asp53 in the AKR5C3 catalytic tetrad has a crucial role in securing active pocket conformation.

View Article and Find Full Text PDF

Gox2253 from Gluconobacter oxydans belongs to the short-chain dehydrogenases/reductases family, and catalyzes the reduction of heptanal, octanal, nonanal, and decanal with NADPH. To develop a robust working platform to engineer novel G. oxydans oxidoreductases with designed coenzyme preference, we adopted a structure based rational design strategy using computational predictions that considers the number of hydrogen bonds formed between enzyme and docked coenzyme.

View Article and Find Full Text PDF

We report a suite of enzyme redesign protocol based on the surface charge-charge interaction calculation, which is potentially applied to improve the stability of an enzyme without compromising its catalytic activity. Together with the experimental validation, we have released a suite of enzyme redesign algorithm Enzyme Thermal Stability System, written based on our model, for open access to meet the needs in wet labs. Lipk107, a lipase of a versatile industrial use, was chosen to test our software.

View Article and Find Full Text PDF

Short-chain dehydrogenase Gox2181 from Gluconobacter oxydans catalyzes the reduction of 2,3-pentanedione by using NADH as the physiological electron donor. To realize its synthetic biological application for coenzyme recycling use, computational design and site-directed mutagenesis have been used to engineer Gox2181 to utilize not only NADH but also NADPH as the electron donor. Single and double mutations at residues Q20 and D43 were made in a recombinant expression system that corresponded to Gox2181-D43Q and Gox2181-Q20R&D43Q, respectively.

View Article and Find Full Text PDF

A polyene macrolide antibiotic tetramycin biosynthetic gene cluster was identified by genome mining and isolated from Streptomyces hygrospinosus var. beijingensis. Genetic and in silico analyses gave insights into the mechanism of biosynthesis of tetramycin, and a model of the tetramycin biosynthetic pathway is proposed.

View Article and Find Full Text PDF

Objective: To explore the therapeutic effect and the mechanism of marrow mesenchymal stem cells (MMSCs) transfected with vascular endothelial growth factor (VEGF) gene in the treatment of pulmonary hypertension in rats.

Methods: MMSCs from the bone marrow of Sprague-Dawley rats were isolated, cultured and propagated in vitro. pIRES2-EGFP-VEGF165 was transfected into MMSC.

View Article and Find Full Text PDF