Bull Math Biol
January 2021
Mathematical equations are often used to model biological processes. However, for many systems, determining analytically the underlying equations is highly challenging due to the complexity and unknown factors involved in the biological processes. In this work, we present a numerical procedure to discover dynamical physical laws behind biological data.
View Article and Find Full Text PDFA common challenge in systems biology is quantifying the effects of unknown parameters and estimating parameter values from data. For many systems, this task is computationally intractable due to expensive model evaluations and large numbers of parameters. In this work, we investigate a new method for performing sensitivity analysis and parameter estimation of complex biological models using techniques from uncertainty quantification.
View Article and Find Full Text PDFInt J Uncertain Quantif
January 2012
The probability density function (PDF), and its corresponding cumulative density function (CDF), provide direct statistical insight into the characterization of a random process or field. Typically displayed as a histogram, one can infer probabilities of the occurrence of particular events. When examining a field over some two-dimensional domain in which at each point a PDF of the function values is available, it is challenging to assess the global (stochastic) features present within the field.
View Article and Find Full Text PDFMarkovian models of ion channels have proven useful in the reconstruction of experimental data and prediction of cellular electrophysiology. We present the stochastic Galerkin method as an alternative to Monte Carlo and other stochastic methods for assessing the impact of uncertain rate coefficients on the predictions of Markovian ion channel models. We extend and study two different ion channel models: a simple model with only a single open and a closed state and a detailed model of the cardiac rapidly activating delayed rectifier potassium current.
View Article and Find Full Text PDF