Publications by authors named "Dongbin Xiong"

The development of carbon-encapsulated alloy catalysts, through a rational design that integrates highly active Me-N-C sites, is essential for improving the reaction kinetics of both oxygen reduction (ORR) and oxygen evolution reactions (OER). This advancement is pivotal for the progression of efficient rechargeable zinc-air batteries (RZABs). In this study, we investigates a CoNi alloy decorated N-doped carbon nanotube (CoNi-NCNT) electrocatalyst using a dual-ligand strategy.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is a subtype of breast cancer with high mortality, and the efficacy of monotherapy for TNBC is still disappointing. Here, we developed a novel combination therapy for TNBC based on a multifunctional nanohollow carbon sphere. This intelligent material contains a superadsorbed silicon dioxide sphere, sufficient loading space, a nanoscale hole on its surface, a robust shell, and an outer bilayer, and it could load both programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) small-molecule immune checkpoints and small-molecule photosensitizers with excellent loading contents, protect these small molecules during the systemic circulation, and achieve accumulation of them in tumor sites after systemic administration followed by the application of laser irradiation, thereby realizing dual attack of photodynamic therapy and immunotherapy on tumors.

View Article and Find Full Text PDF

Lithium metal has been perceived as an extremely attractive anode due to its superior energy density and low redox potential. However, great challenges affiliated with the operating security of Li metal batteries (LMBs) posed by growing Li dendrites hamper the widespread application of rechargeable LMBs. In this study, hierarchical hairball-like boron nitride (h-BN) was fabricated on a Li metal anode using the pulsed laser deposition (PLD) method.

View Article and Find Full Text PDF

K metal is the optimal anode for K-ion batteries because of its high capacity and low operating potential, but it suffers from fast capacity fading and safety issues due to an unstable solid electrolyte interphase (SEI) and continuous K-dendrite growth. Herein, to obtain promising potassium-metal batteries, a 3D polyvinyl-alcohol (PVA)-borax layer is designed, which enables a dendrite-free K-plating/stripping process. The protective layer possesses good wettability, high K-ion diffusivity, and good structural stability, which enables a "uniform and underneath plating" behavior, therefore exhibiting a stable electrochemical performance.

View Article and Find Full Text PDF

Detrimental lithium polysulfide (LiPS) shuttle effects and sluggish electrochemical conversion kinetics in lithium-sulfur (Li-S) batteries severely hinder their practical application. Separator modification has been extensively investigated as an effective strategy to address above issues. Nevertheless, in the case of functional separators, how to effectively block the LiPSs from diffusion while enabling the rapid Li ion transport remains a challenge.

View Article and Find Full Text PDF

Engineering intriguing electrode with exceptional kinetics behaviors is imperative for boosting sodium storage systems. Herein, the uniform nanoframes are threaded by the interwoven carbon nanotube (CNT) conductive network to form an ingenious beads-on-a-string structured NiFePBA nanoframe/CNT (NFPB-NF/CNT) cathode and the corresponding derivative NiFeSe nanoframe/CNT (NFS-NF/CNT) anode. NFPB-NF/CNT exhibited remarkable cycling life along with outstanding rate capability and low voltage decay per cycle.

View Article and Find Full Text PDF

Mixed transition metal sulfides (MTMSs) have been regarded as a potential anode material for sodium-ion batteries (SIBs) due to their high reversible specific capacity. Herein, nanoflower-like few-layered cobalt-tin-based sulfide (F-CoSnS) with a large interlayer spacing is synthesized via a facile route for superior sodium storage. The growth mechanism of this unique F-CoSnS is systematically studied.

View Article and Find Full Text PDF

The high usage for new energy has been promoting the next-generation energy storage systems (ESS). As promising alternatives to lithium ion batteries (LIBs), sodium ion batteries (SIBs) have caused extensive research interest owing to the high natural Na abundance of 2.4 wt.

View Article and Find Full Text PDF

In this study, mesoporous ZnCoO/rGO nanocomposites were favorably synthesized via a simple solvothermal technique. As a prospective anode material for sodium-ion batteries, the resulting ZnCoO/rGO-II nanocomposite exhibited superior electrochemical sodium storage performance with predominant specific capacity, favorable cyclability and ascendant rate capability. For example, an outstanding discharge capacity of 210.

View Article and Find Full Text PDF

The short cycle life of lithium-sulfur batteries (LSBs) plagues its practical application. In this study, a uniform SnO/reduced graphene oxide (denoted as SnO/rGO) composite is successfully designed onto the commercial polypropylene separator for use of interlayer of LSBs to decrease the charge-transfer resistance and trap the soluble lithium polysulfides (LPSs). As a result, the assembled devices using the separator modified with the functional interlayer (SnO/rGO) exhibit improved cycle performance; for instance, over 200 cycles at 1C, the discharge capacity of the cells reaches 734 mAh g.

View Article and Find Full Text PDF

Ti C T , a typical representative among the emerging family of 2D layered transition metal carbides and/or nitrides referred to as MXenes, has exhibited multiple advantages including metallic conductivity, a plastic layer structure, small band gaps, and the hydrophilic nature of its functionalized surface. As a result, this 2D material is intensively investigated for application in the energy storage field. The composition, morphology and texture, surface chemistry, and structural configuration of Ti C T directly influence its electrochemical performance, e.

View Article and Find Full Text PDF

The quality of a perovskite film has a great impact on its light absorption and carrier transport, which is vital to improve high-efficiency perovskite solar cells (PSCs). Herein, it is demonstrated that graphene oxide (GO) can be used as an effective additive in the precursor solution for the preparation of high-quality solution-processed CHNHPbI (MAIPbI) films. It is evidenced by scanning electron microscopy that the size of the grains inside these films not only increases but also becomes more uniform after the introduction of an optimized amount of 1 vol% GO.

View Article and Find Full Text PDF

We report the effort in designing layered SnS nanocrystals decorated on nitrogen and sulfur dual-doped graphene aerogels (SnS@N,S-GA) as anode material of SIBs. The optimized mass loading of SnS along with the addition of nitrogen and sulfur on the surface of GAs results in enhanced electrochemical performance of SnS@N,S-GA composite. In particular, the introduction of nitrogen and sulfur heteroatoms could provide more active sites and good accessibility for Na ions.

View Article and Find Full Text PDF

An interlayer has been regarded as a promising mediator to prolong the life span of lithium sulfur batteries because its excellent absorbability to soluble polysulfide efficiently hinders the shuttle effect. Herein, we designed various interlayers and understand the working mechanism of an interlayer for lithium sulfur batteries in detail. It was found that the electrochemical performance of a S electrode for an interlayer located in cathode side is superior to the pristine one without interlayers.

View Article and Find Full Text PDF

Paper-like electrodes are emerging as a new category of advanced electrodes for flexible supercapacitors (SCs). Graphene, a promising two-dimensional material with high conductivity, can be easily processed into papers. Here, we report a rational design of flexible architecture with Co S nanotube arrays (NAs) grown onto graphene paper (GP) via a facile two-step hydrothermal method.

View Article and Find Full Text PDF

Development of alternative cathode materials is of highly desirable for sustainable and cost-efficient lithium-ion batteries (LIBs) in energy storage fields. In this study, for the first time, we report tunable nitrogen-doped graphene with active functional groups for cathode utilization of LIBs. When employed as cathode materials, the functionalized graphene frameworks with a nitrogen content of 9.

View Article and Find Full Text PDF