Epitope-specific immunotherapies have enabled the targeted treatment of a variety of diseases, ranging from cancer, infection, and autoimmune disorders. For CD8 T cell-based therapies, the precise identification of immunogenic peptides presented by human leukocyte antigen (HLA) class I is essential which can be achieved by immunopeptidomics. Here, using lentivirus-mediated transduction and cell sorting approaches, we present a method to engineer a cell line that does not express its native HLA but instead expresses an HLA of interest (in this instance HLA-A*02:01).
View Article and Find Full Text PDFHuman leukocyte antigen (HLA) molecules play a crucial role in directing adaptive immune responses based on the nature of their peptide ligands, collectively coined the immunopeptidome. As such, the study of HLA molecules has been of major interest in the development of cancer immunotherapies such as vaccines and T-cell therapies. Hence, a comprehensive understanding and profiling of the immunopeptidome is required to foster the growth of these personalised solutions.
View Article and Find Full Text PDFDendritic cells (DC) loaded with specific peptides are strongly immunogenic for T cells and can be used for cancer immunotherapy. For immunogenic tumors such as melanoma, injection of autologous DC loaded with tumor cell extracts or peptides can induce tumor regression but in only a small proportion of patients. Nevertheless, recent studies on the efficacy of checkpoint blockade for boosting antitumor immunity plus advances in defining tumor neoantigens are stimulating renewed interest in DC immunotherapy.
View Article and Find Full Text PDF