Objective: To develop and evaluate a deep learning model for automated segmentation and detection of bone metastasis on spinal MRI.
Materials And Methods: We included whole spine MRI scans of adult patients with bone metastasis: 662 MRI series from 302 patients (63.5 ± 11.
Top-gate ZnO nanowire field-effect transistors (FETs) with Al2O3 gate dielectric layers as storage nodes were fabricated and their memory effects were characterized in this work. The Al2O3 layers deposited on the ZnO nanowire channels were utilized not only as gate dielectric ones but also as charge trapping ones. For a representative top-gate ZnO nanowire FET, its I(DS)-V(GS) characteristics for the double sweep of the gate voltages exhibit the counterclockwise hysteresis and the threshold voltage shift.
View Article and Find Full Text PDFA technique to implement silicon nanowire (SiNW)-based tunneling field-effect transistors (TFETs) on flexible plastic substrates is developed for the first time. The p-i-n configured Si NWs are obtained from an Si wafer using a conventional top-down CMOS-compatible technology, and they are then transferred onto the plastic substrate. Based on gate-controlled band-to-band tunneling (BTBT) as their working principle, the SiNW-based TFETs show normal p-channel switching behavior with a threshold voltage of -1.
View Article and Find Full Text PDFThe memory characteristics of top-gate single ZnO nanowire-based field-effect transistors (FETs) with floating gate nodes consisting of Au nanoparticles on top of the nanowire channels were investigated in this study. Au nanoparticles, synthesized by a thermal deposition of Au thin film and by a subsequent thermal annealing procedure, were embedded in between Al2O3 tunneling and control gate layers deposited on ZnO nanowire channels. For a representative single ZnO nanowire-based FET with floating gate nodes consisting of Au nanoparticles embedded between Al2O3 layers, its drain current versus gate voltage (I(DS)-V(DS)) characteristics for a double sweep in the gate voltage range from -4 to 4 V exhibit a clockwise hysteresis loop with a threshold voltage shift of deltaV(th) = 1.
View Article and Find Full Text PDFPurpose: To explore the effects of power frequency magnetic fields (MF) on cell growth in prostate cancer, DU145, PC3, and LNCaP cells were examined in vitro.
Materials And Methods: The cells were exposed to various intensities and durations of 60-Hz sinusoidal MF in combination with various serum concentrations in the media. To analyze MF effects on cell growth, cell counting, trypan blue exclusion assay, Western blot analysis, flow cytometry, enzyme-linked immunosorbent assay (ELISA), semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), fluorescence microscopy, and spectrofluorometry were used.
The memory characteristics of ZnO nanowire-based nano-floating gate memory (NFGM) with Pt nanocrystals acting as the floating gate nodes were investigated in this work. Pt nanocrystals were embedded between Al(2)O(3) tunneling and control oxide layers deposited on ZnO nanowire channels. For a representative ZnO nanowire-based NFGM with embedded Pt nanocrystals, a threshold voltage shift of 3.
View Article and Find Full Text PDFOmega-shaped-gate (OSG) nanowire-based field effect transistors (FETs) have attracted a great deal of attention recently, because theoretical simulations predicted that they should have a higher device performance than nanowire-based FETs with other gate geometries. OSG FETs with channels composed of ZnO nanowires were successfully fabricated in this study using photolithographic processes. In the OSG FETs fabricated on oxidized Si substrates, the channels composed of ZnO nanowires with diameters of about 110 nm are coated with Al(2)O(3) using atomic layer deposition, which surrounds the channels and acts as a gate dielectric.
View Article and Find Full Text PDF