Ni-Mn-Ga single crystals (SC) exhibiting a giant magnetic field induced strain (MFIS), resulting from twin boundaries rearrangements, are excellent materials for novel actuators although enhanced brittleness and high costs are remaining the issues for applications. In polycrystalline state Ni-Mn-Ga alloys show small MFIS due to grain boundary constraints. By simple size reduction of the mentioned materials it is hardly possible to create quasi-two-dimensional MFIS actuators on the microscale with a pertinent out-of-plane performance.
View Article and Find Full Text PDFDrug-eluting balloons (DEBs) have been mostly exploited as an interventional remedy for treating atherosclerosis instead of cardiovascular stents. However, the therapeutic efficacy of DEB is limited due to their low drug delivery capability to the disease site. The aim of our study was to load drugs onto a balloon catheter with preventing drug loss during transition time and maximizing drug transfer from the surface of DEBs to the cardiovascular wall.
View Article and Find Full Text PDFThe work demonstrated a successful synthesis of nitric oxide (NO)-releasing material and its antibacterial effect on Gram-negative Escherichia coli (E. coli), Gram-positive Staphylococcus aureus (S. aureus) and methicillin-resistant S.
View Article and Find Full Text PDFIn recent years, numerous research activities have been devoted to the controlled release of nitric oxide (NO) due to its potential as a restenosis inhibitor which inhibits the proliferation of vascular smooth muscle cells, the apoptosis of vascular endothelial cells, and aggregation of platelets. This work has demonstrated the development of a novel NO-conjugated gel system comprising of thermosensitive Pluronic F127, branched polyethylenimine (BPEI), and diazeniumdiolates (NONOates). Synthesis of conjugated Pluronic-BPEI-NONOates involved coupling of activated F127 to BPEI followed by the installation of NONOates at the secondary amine sites of branched PEI backbone under high pressure.
View Article and Find Full Text PDFPoly(4-vinylimidazole) (P4V) was obtained by free radical polymerization of 4-vinylimidazole (4V) prepared by decarboxylation of urocanic acid. P4V formed a complex with DNA that exhibited higher transfection effiency on Hela cells than polyethylenimine (PEI), through the proton sponge mechanism of the imidazole groups in the side chain of the P4V, and low cell toxicity.
View Article and Find Full Text PDF