Publications by authors named "DongFang Zhou"

Article Synopsis
  • DNA nanotechnology is making strides in treating clinical diseases, with tetrahedral frameworks nucleic acids (tFNAs) being a key innovation due to their easy design, cost-effectiveness, and high yield.
  • tFNAs are resilient against immune responses and nuclease activity, and their structural programmability allows for the creation of functional and dynamic nanomaterials.
  • The review highlights both the advantages of tFNAs—like biocompatibility and diverse applications in various medical fields—as well as the current limitations and challenges faced in research and clinical settings.
View Article and Find Full Text PDF

Immunotherapy resistance poses a significant challenge in oncology, necessitating novel strategies to enhance the therapeutic efficacy. Immunogenic cell death (ICD), including necroptosis, pyroptosis and ferroptosis, triggers the release of tumor-associated antigens and numerous bioactive molecules. This release can potentiate a host immune response, thereby overcoming resistance to immunotherapy.

View Article and Find Full Text PDF

Intracellular bacteria can multiply inside host cells and manipulate their biology, and the efficacy of traditional antibiotic drug therapy for intracellular bacteria is limited by inadequate drug accumulation. Fighting against these stealthy bacteria has been a long-standing challenge. Here, a system of stimuli-responsive lactoferrin (Lf) nanoparticles is prepared using protein self-assembly technology to deliver broad-spectrum antibiotic rifampicin (Rif) (Rif@Lf NPs) for enhanced infection therapy through targeted elimination of intracellular bacteria.

View Article and Find Full Text PDF
Article Synopsis
  • Current surgical treatments for intracerebral hemorrhage (ICH) save lives, but high lethality and disability rates remain due to individual patient differences and limited postoperative improvement.
  • The review outlines the mechanisms of ICH, highlighting primary and secondary injuries like inflammation and edema, and evaluates existing treatments and their shortcomings.
  • It also explores recent advancements in biomaterials, such as nanomaterials and hydrogels, and discusses their potential challenges and future applications in ICH therapy.
View Article and Find Full Text PDF
Manipulation of protein corona for nanomedicines.

Wiley Interdiscip Rev Nanomed Nanobiotechnol

July 2024

Nanomedicines have significantly advanced the development of diagnostic and therapeutic strategies for various diseases, while they still encounter numerous challenges. Upon entry into the human body, nanomedicines interact with biomolecules to form a layer of proteins, which is defined as the protein corona that influences the biological properties of nanomedicines. Traditional approaches have primarily focused on designing stealthy nanomedicines to evade biomolecule adsorption; however, due to the intricacies of the biological environment within body, this method cannot completely prevent biomolecule adsorption.

View Article and Find Full Text PDF

Radiotherapy (RT) is one of the most feasible and routinely used therapeutic modalities for treating malignant tumors. In particular, immune responses triggered by RT, known as radio-immunotherapy, can partially inhibit the growth of distantly spreading tumors and recurrent tumors. However, the safety and efficacy of radio-immunotherapy is impeded by the radio-resistance and poor immunogenicity of tumor.

View Article and Find Full Text PDF

Developing nanozymes with effective reactive oxygen species (ROS) scavenging ability is a promising approach for osteoarthritis (OA) treatment. Nonetheless, numerous nanozymes lie in their relatively low antioxidant activity. In certain circumstances, some of these nanozymes may even instigate ROS production to cause side effects.

View Article and Find Full Text PDF
Article Synopsis
  • Bacteria-associated infections and thrombosis, especially from catheters, pose serious health risks, prompting research into better coatings for medical devices.
  • The study introduces a new multifunctional coating made from heparin sodium and organosilicon quaternary ammonium surfactant that can adapt to different shapes and surfaces of catheters.
  • This innovative coating not only significantly reduces thrombus adhesion by 60% but also shows over 97% antibacterial effectiveness, and has been tested on rabbits to confirm its ability to prevent infections during catheter use.
View Article and Find Full Text PDF

The generation of multi-mode vortex beams at the same aperture is currently emerging as a research hotspot. In this paper, a method based on a linearly polarized-circularly polarized translational transmission metasurface (TM) is proposed to enable a dual-circularly polarized dual-mode vortex beam generation. Through the judicious implementation of an additional rotational phase and the combination of the initial transmission phase, the phases of the left-hand circularly polarized (LHCP) and right-hand circularly polarized (RHCP) waves can be manipulated arbitrarily and independently.

View Article and Find Full Text PDF

The effectiveness of chemotherapy is primarily hindered by drug resistance, and autophagy plays a crucial role in overcoming this resistance. In this project, a human transferrin nanomedicine contains quercetin (a drug to induce excessive autophagy) and doxorubicin is developed (HTf@DOX/Qu NPs). The purpose of this nanomedicine is to enhance mitophagy and combating drug-resistant cancer.

View Article and Find Full Text PDF

No current pharmacological approach is capable of simultaneously inhibiting the symptomatology and structural progression of osteoarthritis. M1 macrophages and activated synovial fibroblasts (SFs) mutually contribute to the propagation of joint pain and cartilage destruction in osteoarthritis. Here, we report the engineering of an apoptotic neutrophil membrane-camouflaged liposome (termed "NM@Lip") for precise delivery of triamcinolone acetonide (TA) by dually targeting M1 macrophages and activated SFs in osteoarthritic joints.

View Article and Find Full Text PDF

It is reported that pulmonary fibrosis has become one of the major long-term complications of COVID-19, even in asymptomatic individuals. Currently, despite the best efforts of the global medical community, there are no treatments for COVID-induced pulmonary fibrosis. Recently, inhalable nanocarriers have received more attention due to their ability to improve the solubility of insoluble drugs, penetrate biological barriers of the lungs and target fibrotic tissues in the lungs.

View Article and Find Full Text PDF

Polyprodrug nanomedicines hold great potential for combating tumors. However, the functionalization of polyprodrug nanomedicines to improve therapeutic efficacy is restricted by conventional polymerization methods. Herein, we fabricated a charge-conversional click polyprodrug nanomedicine system by metal-free azide-alkyne cycloaddition click polymerization (AACCP) for targeted and synergistic cancer therapy.

View Article and Find Full Text PDF

Controlled environment agriculture hydroponic systems grow plants year-round without restriction from outside environmental conditions. In order to further improve crop yield, plant growth-promoting bacteria were tested on hydroponically grown lettuce () plants. From our bacterial endophyte library, we found one bacterium, IALR632, that is promising in promoting lettuce growth in multiple hydroponic systems.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) has attracted much attention in recent years for its favorable therapeutic efficacy in cancer therapy. However, PDT alone is insufficient to improve the therapeutic efficiency mainly due to the limited penetration depth of light, the insufficient O supply in the hypoxic microenvironment, and the high level of reducing substances in cancer cells. To overcome these limitations, a multifunctional MnO nanoparticle was constructed with honeycomb MnO which was loaded with the photosensitizer Ce6 and modified with polydopamine on its surface (HMnO/C&P) to achieve efficient PDT/mild photothermal treatment (PTT) combination therapy.

View Article and Find Full Text PDF

Chemoradiotherapy is a widely used treatment for patients with malignancies such as hepatocellular carcinoma (HCC). However, it remains challenging to realize safe and synergistic chemotherapy and radiation sensitization. Herein, we design a self-targeting nano-assembly (STNA) based on platinum(IV)-lactose amphiphilic prodrug for synergistic and safe chemoradiotherapy of HCC.

View Article and Find Full Text PDF

Cartilage defect is one of the most common pathogenesis of osteoarthritis (OA), a degenerative joint disease that affects millions of people globally. Due to lack of nutrition and local metabolic inertia, the repair of cartilage has always been a difficult problem to be urgently solved. Herein, a functional gelatin hydrogel scaffold (GelMA-AG) chemically modified with alanyl-glutamine (AG) is proposed and prepared.

View Article and Find Full Text PDF

Current cancer treatment is not only limited to monotherapy but is also influenced by limited drug delivery options. Combined chemokinetic-photokinetic therapy has great promise in enhancing anticancer effects. Meanwhile, zein has superior self-assembly properties and can be loaded with photosensitizers.

View Article and Find Full Text PDF

To improve the accuracy of the current vision-based linear displacement measurement in a large range, a new type of linear displacement sensing system, namely, image grating, is proposed in this paper. The proposed system included a patterned glass plate attached to the moving object and an ultra-low distortion lens for high-accuracy image matching. A DFT local up-sampling phase correlation method was adopted to obtain the sub-pixel translation of the patterns onto the target plate.

View Article and Find Full Text PDF

Ovarian cancer (OV) seriously damages women's health because of refractory OV and the development of platinum (Pt) resistance. New treatment strategies are urgently needed to deal with the treatment of cisplatin-resistant OV. Here, a reduction-sensitive pegylated Pt(IV) prodrug was synthesized by amidation of methoxy polyethylene glycol amine (PEG-NH) with monocarboxylic Pt(IV) prodrug (Pt(IV)-COOH).

View Article and Find Full Text PDF

Tumor-associated macrophages (TAMs) are a promising therapeutic target for cancers, but achieving multitarget therapy of TAMs is still challenging. Here, we develop a protein-crowned micelle system for targeted and synergistic TAM reprogramming to enhance cancer treatment. The doxorubicin-loaded micelles with a hemoglobin crown (Hb-DOXM) can bind with endogenous plasma haptoglobin to realize specific M2-type TAM targeting.

View Article and Find Full Text PDF

Local tumor photothermal treatment with the near-infrared light at the second window (NIR-II) is a promising strategy in triggering the in situ tumor vaccination (ISTV) for cancer therapy. However, limited penetration of photothermal agents within tumors seriously limits their spatial effect in generating sufficient tumor-associated antigens, a key factor to the success of ISTV. In this study, a nano-adjuvant system is fabricated based on the NIR-II-absorbable gold nanostars decorated with hyaluronidases and immunostimulatory oligodeoxynucleotides CpG for ISTV.

View Article and Find Full Text PDF

Theranostics of platinum (Pt)-based chemotherapy are able to self-track the biodistribution and pharmacokinetics while performing therapeutic effects. Pt-based CT imaging is expected to visualize and monitor the tumor throughout the entire tumor inhibition stage. However, a sufficient Pt concentration is necessary for CT imaging, which may bring about severe nephrotoxicity.

View Article and Find Full Text PDF

Cisplatin (CDDP) is one of the most successful chemotherapeutic agents for cancer therapy. However, CDDP can activate pro-survival autophagy, which inhibits the therapeutic efficacy of CDDP. Herein, autophagy inhibitor verteporfin (VTPF) is integrated into CDDP-conjugated micelles to address this issue.

View Article and Find Full Text PDF

Short peptides with self-assembled nanostructures are widely applied in the areas of drug delivery systems and biomaterials. In this article, we create a new peptide-based hydrogelator (Fmoc-FFRRVR) based on -fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF) through an approach to improve its hydrophilicity. Compared to Fmoc-FF, Fmoc-FFRRVR prefers to form a hydrogel under mild conditions, and the gelation time is only 2 s.

View Article and Find Full Text PDF