Publications by authors named "Dong-Ying Yan"

Manganese (Mn), an essential micronutrient, acts as a cofactor for multiple enzymes. Epidemiological investigations have shown that an excessive level of Mn is an important environmental factor involved in neurotoxicity. Frequent pollution of air and water by Mn is a serious threat to the health of the population.

View Article and Find Full Text PDF

Manganese (Mn) overexposure produces long-term cognitive deficits and reduces brain-derived neurotrophic factor (BDNF) in the hippocampus. However, it remains elusive whether Mn-dependent enhanced alpha-synuclein (α-Syn) expression, suggesting a multifaceted mode of neuronal toxicities, accounts for interference with BDNF/TrkB signaling. In this study, we used C57BL/6J WT and α-Syn knockout (KO) mice to establish a model of manganism and found that Mn-induced impairments in spatial memory and synaptic plasticity were related to the α-Syn protein.

View Article and Find Full Text PDF

Overexposure to manganese (Mn) can result in neurotoxicity and is associated with manganism, a Parkinson's-like neurological disorder. In addition, Mn can induce endoplasmic reticulum (ER) stress and autophagy. In this study, we used C57BL/6 mice to establish a model of manganism and found that Mn could induce cell injury.

View Article and Find Full Text PDF

Exposure to excess levels of manganese (Mn) may lead to nitrosative stress and neurotoxic effects on the central nervous system (CNS). The dysfunction of autophagy correlates with Mn-induced nitrosative stress; however, the exact mechanism of Mn-mediated autophagy dysfunction is still unclear. Three S-nitrosylated target proteins, namely, JNK, Bcl-2, and IKKβ, were classified as the pivotal signaling pathway mediators that could play a role in the regulation of autophagy.

View Article and Find Full Text PDF

Caldesia is a genus in the family Alismataceae mainly found in the tropical and temperate regions of the Northern hemisphere. In China, two species, Caldesia parnassifolia, and Caldesia grandis are recorded as critically endangered in sporadic regions. Available protection of the genetic resource of these threatened species has been impeded due to limited genomic information.

View Article and Find Full Text PDF

Overexposure to manganese (Mn) is neurotoxic. Our previous research has demonstrated that the interaction of endoplasmic reticulum (ER) stress and autophagy participates in the early stage of Mn-mediated neurotoxicity in mouse. However, the mechanisms of ER stress signalling pathways in the initiation of autophagy remain confused.

View Article and Find Full Text PDF

Overexposure to manganese (Mn) is widely known to induce alpha-synuclein (α-Syn) oligomerization, which has been attributed to the oxidative damage of α-Syn protein. Trehalose has been shown to induce autophagy and serve as a chemical chaperone, but little information has been reported about its effect on Mn-induced α-Syn oligomerization. In this study, we investigate whether trehalose can effectively interfere with Mn-induced α-Syn oligomerization, using different concentrations of trehalose (2% and 4% (g/vol [mL])) in a mouse model of manganism.

View Article and Find Full Text PDF

Chronic overexposure to manganese (Mn) has been verified to induce mitochondrial dysfunction, which is related to oxidative damage. The autophagic-lysosomal degradation pathway plays a vital role in the removal of impaired mitochondria through a specific quality control mechanism termed mitophagy. However, trehalose functions as an inducer of autophagy by an mTOR-independent mechanism, and little data report its effect on Mn-induced mitochondrial dysfunction.

View Article and Find Full Text PDF

Overexposure to manganese (Mn) is an important environmental risk factor for Parkinsonian-like symptoms referred to as manganism. Alpha-synuclein (α-Syn) oligomerization is a major cause in Mn-induced neurotoxicity. Autophagy, as an adjust response to control intracellular protein homeostasis, is involved in the degradation of α-Syn monomers or oligomers.

View Article and Find Full Text PDF

Synaptic vesicle fusion is mediated by an assembly of soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs), composed of syntaxin 1, soluble NSF-attachment protein (SNAP)-25, and synaptobrevin-2/VAMP-2. Previous studies have suggested that over-exposure to manganese (Mn) could disrupt synaptic vesicle fusion by influencing SNARE complex formation, both in vitro and in vivo. However, the mechanisms underlying this effect remain unclear.

View Article and Find Full Text PDF

Overexposure to Manganese (Mn) has been known to disrupt neurotransmitter release in the brain. However, the underlying mechanisms of Mn exposure on neurotransmitter vesicle release are still unclear. The current study investigated whether Mn-induced alpha-synuclein protein overexpression could disrupt the Rab3 cycle leading to synaptic vesicle fusion dysfunction.

View Article and Find Full Text PDF

Overexposure to manganese (Mn) has been known to induce alpha-synuclein (α-Syn) oligomerization, which is degraded mainly depending on endoplasmic reticulum stress (ER stress) and autophagy pathways. However, little data reported the cross-talk between ER stress and autophagy on Mn-induced α-Syn oligomerization. To explore the relationship between ER stress and autophagy, we used 4-phenylbutyric acid (4-PBA, the ER stress inhibitor), rapamycin (Rap, autophagy activator) and 3-methyladenine (3-MA, autophagy inhibitor) in mice model of manganism.

View Article and Find Full Text PDF

Overexposure to manganese (Mn) has been known to induce nitrosative stress. The dysregulation of autophagy has implicated in nitric oxide (NO) bioactivity alterations. However, the mechanism of Mn-induced autophagic dysregulation is unclear.

View Article and Find Full Text PDF