Publications by authors named "Dong-Yeol Kim"

This study investigated the behavioral and molecular changes in the telencephalon following needle stab-induced injury in the optic tectum of adult zebrafish. At 3 days post-injury (dpi), there was noticeable structural damage to brain tissue and reduced neuronal proliferation in the telencephalon that persisted until 30 dpi. Neurobehavioral deficits observed at 3 dpi included decreased exploratory and social activities and impaired learning and memory (L/M) functions; all of these resolved by 7 dpi.

View Article and Find Full Text PDF

This study explores the 24-h rhythmic cycle of protein O-GlcNAcylation within the brain and highlights its crucial role in regulating the circadian cycle and neuronal function based on zebrafish as an animal model. In our experiments, disruption of the circadian rhythm, achieved through inversion of the light-dark cycle or daytime melatonin treatment, not only impaired the rhythmic changes of O-GlcNAcylation along with altering expression patterns of O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) in zebrafish brain but also significantly impeded learning and memory function. In particular, circadian disruption affected rhythmic expression of protein O-GlcNAcylation and OGT in the nuclear fraction.

View Article and Find Full Text PDF

This study investigated the role of O-GlcNAc cycling in Alzheimer's disease-related changes in brain pathophysiology induced by chronic REM sleep deprivation (CSD) in mice. CSD increased amyloid beta (Aβ) and p-Tau accumulation and impaired learning and memory (L/M) function. CSD decreased dendritic length and spine density.

View Article and Find Full Text PDF

This study aimed to elucidate the role of O-GlcNAc cycling in 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease (PD)-like neurodegeneration and the underlying mechanisms. We observed dose-dependent downregulation of O-GlcNAcylation, accompanied by an increase in O-GlcNAcase following 6-OHDA treatment in both mouse brain and Neuro2a cells. Interestingly, elevating O-GlcNAcylation through glucosamine (GlcN) injection provided protection against PD pathogenesis induced by 6-OHDA.

View Article and Find Full Text PDF

Sleep deprivation (SD) is widely acknowledged as a significant risk factor for cognitive impairment. In this study, intraperitoneal caffeine administration significantly ameliorated the learning and memory (L/M) deficits induced by SD and reduced aggressive behaviors in adult zebrafish. SD led to a reduction in protein kinase A (PKA) phosphorylation, phosphorylated-cAMP response element-binding protein (p-CREB), and c-Fos expression in zebrafish brain.

View Article and Find Full Text PDF

Repeated sublethal hypoxia exposure induces brain inflammation and affects the initiation and progression of cognitive dysfunction. Experiments from the current study showed that hypoxic exposure downregulates PKA/CREB signaling, which is restored by forskolin (FSK), an adenylate cyclase activator, in both Neuro2a (N2a) cells and zebrafish brain. FSK significantly protected N2a cells from hypoxia-induced cell death and neurite shrinkage.

View Article and Find Full Text PDF

Elevated blood glucose is associated with an increased risk of atherosclerosis. Data from the current study showed that glucosamine (GlcN), a normal glucose metabolite of the hexosamine biosynthetic pathway (HBP), promoted lipid accumulation in RAW264.7 macrophage cells.

View Article and Find Full Text PDF

This study investigated chronic and repeated sleep deprivation (RSD)-induced neuronal changes in hexosamine biosynthetic pathway/O-linked N-acetylglucosamine (HBP/O-GlcNAc) cycling of glucose metabolism and further explored the role of altered O-GlcNAc cycling in promoting neurodegeneration using an adult zebrafish model. RSD-triggered degenerative changes in the brain led to impairment of memory, neuroinflammation and amyloid beta (Aβ) accumulation. Metabolite profiling of RSD zebrafish brain revealed a significant decrease in glucose, indicating a potential association between RSD-induced neurodegeneration and dysregulated glucose metabolism.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) is selectively degraded by ER-phagy to maintain cell homeostasis. α-synuclein accumulates in the ER, causing ER stress that contributes to neurodegeneration in Parkinson's disease (PD), but the role of ER-phagy in α-synuclein modulation is largely unknown. Here, we investigated the mechanisms by which ER-phagy selectively recognizes α-synuclein for degradation in the ER.

View Article and Find Full Text PDF

Impaired brain glucose metabolism is considered a hallmark of brain dysfunction and neurodegeneration. Disruption of the hexosamine biosynthetic pathway (HBP) and subsequent -linked -acetylglucosamine (-GlcNAc) cycling has been identified as an emerging link between altered glucose metabolism and defects in the brain. Myriads of cytosolic and nuclear proteins in the nervous system are modified at serine or threonine residues with a single -acetylglucosamine (-GlcNAc) molecule by -GlcNAc transferase (OGT), which can be removed by β--acetylglucosaminidase (-GlcNAcase, OGA).

View Article and Find Full Text PDF

Background: Mesenchymal stem cells (MSCs) may be one of candidates for disease-modifying therapy in Parkinsonian diseases. As knowledge regarding the therapeutic properties of MSCs accumulates, some obstacles still remain to be overcome, especially, successful clinical translation requires the development of culture systems that mimic the natural MSC niche, while allowing clinical-scale cell expansion without compromising quality and function of the cells. In recent years, priming approaches using bioactive peptide or complement components have been investigated to enhance the therapeutic potential of MSCs.

View Article and Find Full Text PDF

Background: Adult neurogenesis is the process of generating new neurons to enter neural circuits and differentiate into functional neurons. However, it is significantly reduced in Parkinson's disease (PD). Uric acid (UA), a natural antioxidant, has neuroprotective properties in patients with PD.

View Article and Find Full Text PDF

Ample evidence has demonstrated that α-Synuclein can propagate from one area of the brain to others via cell-to-cell transmission, which might be the underlying mechanism for pathological propagation and the disease progression of Parkinson's disease (PD). Recent reports have demonstrated cell surface receptor-mediated cell-to-cell transmission of α-synuclein. Memantine decreased the levels of internalized cytosolic α-synuclein and led to attenuation in α-synuclein-induced cell death.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are a potential source of cell-based disease-modifying therapy in Parkinsonian disorders. A promising approach to develop in vitro culture methods that mimic natural MSC niche is cell priming. Uric acid (UA), a powerful antioxidant, scavenges reactive oxygen species, which has a vital role in maintaining self-renewal and differentiation potential of MSCs.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) promote functional recoveries in pathological experimental models of the central nervous system and are currently being tested in clinical trials for neurological disorders. However, no studies have examined the various roles of embryonic stem cell derived (ES)-MSCs in eliciting therapeutic effects for Alzheimer's disease (AD). In the present study, we investigated the neuroprotective effect of ES-MSCs in cellular and animal models of AD, as well as the safety of the intra-arterial administration of ES-MSCs in an AD animal model.

View Article and Find Full Text PDF

Genome-wide association studies have identified two loci, SNCA and the microtubule (MT)-associated protein tau, as common risk factors for Parkinson's disease (PD). Specifically, α-synuclein directly destabilizes MT via tau phosphorylation and induces axonal transport deficits that are the primary events leading to an abnormal accumulation of α-synuclein that causes nigral dopaminergic cell loss. In this study, we demonstrated that mesenchymal stem cells (MSCs) could modulate cytoskeletal networks and trafficking to exert neuroprotective properties in wild-type or A53T α-synuclein overexpressing cells and mice.

View Article and Find Full Text PDF

Ample evidence has suggested that extracellular α-synuclein aggregates would play key roles in the pathogenesis and progression of Parkinsonian disorders (PDs). In the present study, we investigated whether mesenchymal stem cells (MSCs) and their derived soluble factors could exert neuroprotective effects via proteolysis of extracellular α-synuclein. When preformed α-synuclein aggregates were incubated with MSC-conditioned medium, α-synuclein aggregates were disassembled, and insoluble and oligomeric forms of α-synuclein were markedly decreased, thus leading to a significant increase in neuronal viability.

View Article and Find Full Text PDF

Multiple system atrophy (MSA) is a sporadic neurodegenerative disease of the central and autonomic nervous system. Because no drug treatment consistently benefits MSA patients, neuroprotective strategy using mesenchymal stem cells (MSCs) has a lot of concern for the management of MSA. In this study, we investigated the safety and efficacy of intra-arterial administration of MSCs via internal carotid artery (ICA) in an animal model of MSA.

View Article and Find Full Text PDF

Background: Painful hip following hip dislocation or acetabular fracture can be an important signal for early degeneration and progression to osteoarthritis due to intraarticular pathology. However, there is limited literature discussing the use of arthroscopy for the treatment of painful hip. The purpose of this retrospective study was to analyze the effectiveness and benefit of arthroscopic treatment for patients with a painful hip after major trauma.

View Article and Find Full Text PDF

Solitary osteochondromas originating from the carpal bones are very uncommon; when they occur, they usually arise from the scaphoid or capitate. We report a solitary, unilobed osteochondroma arising from the hamate that was excised, with no evidence of recurrence at the 3-year follow-up.

View Article and Find Full Text PDF

Purpose: We prospectively analyzed the differences in the preoperative status and final outcomes between patients with or without the motivation for prompt surgery after a recent diagnosis of carpal tunnel syndrome (CTS).

Methods: One hundred fifty-six patients were enrolled and followed up from a cohort of 220 patients who were diagnosed with CTS between 2011 and 2013. Basic demographic factors, including the occupational features, were investigated in group 1 (n = 52, conservative treatment followed by surgery) and group 2 (n = 100, surgery immediately after diagnosis).

View Article and Find Full Text PDF

Continuous intra- and extracellular stresses induce disorder of Ca(2+) homeostasis and accumulation of unfolded protein in the endoplasmic reticulum (ER), which results in ER stress. Severe long-term ER stress triggers apoptosis signaling pathways, resulting in cell death. Neural epidermal growth factor-like like protein 2 (NELL2) has been reported to be important in protection of cells from cell death-inducing environments.

View Article and Find Full Text PDF

NELL2 was first identified as a mammalian homolog of chick NEL (Neural EGF-like) protein. It is almost exclusively expressed in neurons of the rat brain and has been suggested to play a role in neural differentiation. However, there is still no clear evidence for the detailed function of NELL2 in the differentiation of neurons.

View Article and Find Full Text PDF

NELL2 (neural tissue-specific epidermal growth factor-like repeat domain-containing protein) is a secreted glycoprotein that is predominantly expressed in neural tissues. We reported previously that NELL2 mRNA abundance in brain is increased by estrogen (E2) treatment and that NELL2 is involved in the E2-dependent organization of a sexually dimorphic nucleus in the preoptic area. In this study we cloned the mouse NELL2 promoter and found it to contain two half-E2 response elements.

View Article and Find Full Text PDF