Immobilization can lead to intervertebral disc degeneration. The biomechanical characteristics of such discs have not so far been investigated at the micro- or nanoscale, the level at which cells sense and respond to the surrounding environment. This study aimed to characterize changes in the elastic modulus of the collagen fibrils in the nucleus pulposus at the nanoscale and correlate this with micro-biomechanical properties of the nucleus pulposus after immobilization, in addition to observation of tissue histology and its gene expressions.
View Article and Find Full Text PDFConnect Tissue Res
September 2020
Purpose: Osteoarthritis (OA) is a chronic degenerative joint disease. Sensory nerves play an important role in bone metabolism and in the progression of inflammation. This study explored the effects of sensory nerve on OA progression at early stage in mice.
View Article and Find Full Text PDFOsteoporosis can be associated with the disordered balance between osteogenesis and adipogenesis of bone marrow-derived mesenchymal stem cells (BM-MSCs). Although low-frequency mechanical vibration has been demonstrated to promote osteogenesis, little is known about the influence of acoustic-frequency vibratory stimulation (AFVS). BM-MSCs were subjected to AFVS at frequencies of 0, 30, 400, and 800 Hz and induced toward osteogenic or adipogenic-specific lineage.
View Article and Find Full Text PDF