Publications by authors named "Dong-Uk Lee"

Bioaerosols pose significant risks to indoor environments and public health, driving interest in advanced antimicrobial air filtration technologies. Conventional antimicrobial filters often suffer from diminished efficacy over time and require additional binders to retain antimicrobial agents. This study introduces CV@PAN, a self-disinfecting nanofiber fabricated via electrospinning of crystal violet (CV) and polyacrylonitrile (PAN).

View Article and Find Full Text PDF
Article Synopsis
  • * The unique CMC-SNF nanostructure can be easily applied to BCD surfaces through a spraying technique, creating a strong, water-friendly layer that prevents bacteria and blood cell adhesion.
  • * Laboratory tests show that the CMC-SNF-coated catheters and sheaths offer improved antimicrobial and lubricity performance, making this method a promising solution for improving various BCDs.
View Article and Find Full Text PDF
Article Synopsis
  • Vertebroplasty (VP) and balloon kyphoplasty (KP) are two procedures used to treat osteoporotic vertebral compression fractures, aiming to relieve pain and improve function, but their complication risks, especially adjacent fractures, are not well understood.
  • A study involving 115 patients found that KP was more effective than VP in restoring vertebral height and reducing kyphotic angles, although the rates of cement leakage and new adjacent fractures were similar for both methods.
  • Overall, while both procedures showed no significant differences in clinical outcomes regarding adjacent fractures, KP demonstrated better radiological improvements, suggesting it could be a preferable option for treating severe vertebral fractures.
View Article and Find Full Text PDF

Blood-contacting devices must be designed to minimize the risk of bloodstream-associated infections, thrombosis, and intimal lesions caused by surface friction. However, achieving effective prevention of both bloodstream-associated infections and thrombosis poses a challenge due to the conflicting nature of antibacterial and antithrombotic activities, specifically regarding electrostatic interactions. This study introduced a novel biocompatible hydrogel of sodium alginate and zwitterionic carboxymethyl chitosan (ZW@CMC) with antibacterial and antithrombotic activities for use in catheters.

View Article and Find Full Text PDF

Although the personal protective equipment (PPE) used by healthcare workers (HCWs) effectively blocks hazardous substances and pathogens, it does not fully rule out the possibility of infection, as pathogens surviving on the fabric surface pose a substantial risk of cross-infection through unintended means. Therefore, PPE materials that exhibit effective biocidal activity while minimizing contamination by viscous body fluids (e.g.

View Article and Find Full Text PDF

The development of efficient methods for evaluating pesticide residues is essential in order to ensure the safety and quality of agricultural products since the Republic of Korea implemented the Positive List System (PLS). The objective of this research was to establish a method for the simultaneous analysis of 322 pesticide residues in fruits and vegetables (such as coffee, potato, corn, and chili pepper), using the quick, easy, cheap, effective, rugged, and safe (QuEChERS) approach in combination with gas chromatography-tandem mass spectrometry (GC-MS/MS). This study introduces a robust, high-throughput GC-MS/MS method for screening the target pesticide residues in agricultural products, achieving the PLS criterion of 0.

View Article and Find Full Text PDF

Background: The wound healing process is a complex cascade of physiological events, which are vulnerable to both our body status and external factors and whose impairment could lead to chronic wounds or wound healing impediments. Conventional wound healing materials are widely used in clinical management, however, they do not usually prevent wounds from being infected by bacteria or viruses. Therefore, simultaneous wound status monitoring and prevention of microbial infection are required to promote healing in clinical wound management.

View Article and Find Full Text PDF

Healthcare-associated infections can occur and spread through direct contact with contaminated fomites in a hospital, such as mobile phones, tablets, computer keyboards, doorknobs, and other surfaces. Herein, this study shows a transparent, robust, and visible light-activated antibacterial surface based on hydrogen bonds between a transparent silica-alumina (Si-Al) sol-gel and a visible light-activated photosensitizer, such as crystal violet (CV). The study of the bonding mechanisms revealed that hydrogen bonding predominantly occurs between the N of CV and Al-OH.

View Article and Find Full Text PDF

Porcine circovirus type 2 (PCV2) is an economically important swine pathogen that causes porcine circovirus-associated diseases (PCVADs). The objective of this study was to evaluate the use of specific pathogen-free Yucatan miniature pigs (YMPs) as an experimental model for PCV2d challenge and vaccine assessment because PCV2-negative pigs are extremely rare in conventional swine herds in Korea. In the first experiment, every three pigs were subjected to PCV2d field isolate or mock challenge.

View Article and Find Full Text PDF

Outbreaks of airborne pathogens pose a major threat to public health. Here we present a single-step nanocoating process to endow commercial face mask filters with photobiocidal activity, triboelectric filtration capability, and washability. These functions were successfully achieved with a composite nanolayer of silica-alumina (Si-Al) sol-gel, crystal violet (CV) photosensitizer, and hydrophobic electronegative molecules of 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane (PFOTES).

View Article and Find Full Text PDF

To date, few studies related to the evaluation of the pathogenicity of different PRRSV isolates using a reproductive model have been undertaken, and the main focus has remained on respiratory models using young pigs. This study aimed to evaluate the pathogenicity of two PRRSV-1 isolates (D40 and CBNU0495) and two PRRSV-2 isolates (K07-2273 and K08-1054) in a reproductive model. Pregnant sows were experimentally infected with PRRSV at gestational day 93 or used as an uninfected negative control.

View Article and Find Full Text PDF

To prevent infections associated with biomedical catheters, various antimicrobial coatings have been investigated. However, those materials do not provide consistent antibacterial effects or biocompatibility, generally, due to degradation of the coating materials, in vivo. Additionally, biomedical catheters must have low surface friction to reduce tribological damage.

View Article and Find Full Text PDF

Despite the routine use of porcine reproductive and respiratory syndrome (PRRS)-modified live vaccines, serious concerns are currently being raised due to their quick reversion to virulence and limited cross-protection against divergent PRRS virus (PRRSV) strains circulating in the field. Therefore, a PRRS chimeric vaccine (JB1) was produced using a DNA-launched infectious clone by replacing open reading frames (ORFs) 3-6 with those from a mixture of two genetically different PRRSV2 strains (K07-2273 and K08-1054) and ORF1a with that from a mutation-resistant PRRSV strain (RVRp22) exhibiting an attenuated phenotype. To evaluate the safety and cross-protective efficacy of JB1 in a reproductive model, eight PRRS-negative pregnant sows were purchased and divided into four groups.

View Article and Find Full Text PDF

In this study, cholesterol (CH), β-sitosterol (SI), and stigmasterol (ST) were explored to improve the stability of retinol in the liposome bilayer. Retinol was incorporated into liposomes composed of soybean-derived L-α-phosphatidylcholine (PC) and 10% sterol (w/w), which were prepared as multilamellar vesicles. Under all conditions, the efficiency of retinol incorporation into liposomes was higher than 99%, and the average particle size of liposomes was similar to that of PC alone.

View Article and Find Full Text PDF

Potential strategies such as surface passivation and perovskite material halide mixing may protect material surfaces, improve luminescence, and reduce charge traps for device stability. In this study, we used deep level transient spectroscopy to investigate the effect of CdSe/ZnS core-shell quantum dots (QDs) on defect states and carrier transport in methylammonium (MA) lead halide perovskites (CHNHPbX where X  = I, Br). In MAPbI and MAPbIBr films with CdSe/ZnS QDs, the density of hole traps located at E + 0.

View Article and Find Full Text PDF

Surface oxide (AlO) of reactive fine aluminum (Al) particles for solid fuels, propellants, and brazing materials often restricted oxidative performance, though the passivation film acts to protect Al particles from exploding. Here, we report fine Al particles fully covered with a polytetrafluoroethylene (PTFE) layer instead of an AlO film on the surface. This advance is based on the introduction of strong Al-F bonds, known to be an alternative to the Al-O bonds of surface oxides.

View Article and Find Full Text PDF

We have optimized the responsivity and response speed of a β-GaO-based photodetector. The β-GaO thin films were deposited on a glass substrate under various oxygen partial pressures from 0 to 50 mTorr using pulsed laser deposition. Time-response measurements show that the as-grown β-GaO at an oxygen partial pressure of 50 mTorr has the fastest response speed and decay times of 33 and 100 ms, which are better than those prepared at lower oxygen pressures.

View Article and Find Full Text PDF

The recent emergence and re-emergence of porcine epidemic diarrhea virus (PEDV) underscore the urgent need for the development of novel, safe, and effective vaccines against the prevailing strain. In this study, we generated a cold-adapted live attenuated vaccine candidate (Aram-P29-CA) by short-term passage of a virulent PEDV isolate at successively lower temperatures in Vero cells. Whole genome sequencing identified 12 amino acid changes in the cold-adapted strain with no insertions and deletions throughout the genome.

View Article and Find Full Text PDF

Because the power conversion efficiency (PCE) of hybrid halide perovskite solar cells (PSCs) could exceed 24%, extensive research has been focused on improving their long-term stability for commercialization in the near future. In a previous study, we reported that the addition of a number of ionized iodide (triiodide: I) ions during perovskite film formation significantly improved the efficiency of PSCs by reducing deep-level defects in the perovskite layer. Understanding the relationship between the concentration of these defects and the long-term chemical aging of PSCs is important not only for obtaining fundamental insight into the perovskite materials but also for studying the long-term chemical stability of PSCs.

View Article and Find Full Text PDF

Since the 2013-2014 incursion of the virulent G2b porcine epidemic diarrhoea virus (PEDV) pandemic strains in South Korea, frequent moderate-scale regional outbreaks have recurred. In particular, areas of Jeju Island with extensive swine production have faced repeated epidemics since the re-emergence in 2014. The current study reports the complete genome sequences and molecular characterization of the representative PEDV strains responsible for the 2018 endemic outbreaks on Jeju Island.

View Article and Find Full Text PDF

We have previously reported the generation of the attenuated KNU-141112-S DEL5/ORF3 virus by continuous propagation of highly virulent G2b porcine epidemic diarrhea virus (PEDV) in Vero cells. The present study aimed to assess the safety of S DEL5/ORF3 and to evaluate its effectiveness as a live vaccine for prime-booster vaccinations. Reversion to virulence experiments revealed that the S DEL5/ORF3 strain retains its attenuated phenotype and genetic stability after five successive passages in susceptible piglets.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV) is a widespread viral pathogen that has caused tremendous economic losses throughout most pig-producing countries. Nowadays, both PRRSV-1 and PRRSV-2 co-circulate in Korean pig populations, and commercial modified live vaccine (MLV) is predominantly used to control PRRS. Specifically, control strategy using only PRRSV-2 MLV that was used since 1995 cannot prevent the spread of PRRSV-1 and damage from its infection, which led to the first introduction of two additional PRRSV-1 vaccines in 2014.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically important pathogen that affects the global swine industry. The continuous evolution of this virus has made control and prevention difficult, which emphasizes the importance of monitoring currently circulating PRRSV strains. In this study, we investigated the genetic characteristics of whole structural genes of 35 PRRSV-2 isolates that circulated between 2012 and 2017 in Korea.

View Article and Find Full Text PDF

Vaccination is considered a frequently used tool to prevent and control foot-and-mouth disease (FMD). However, the effectiveness of conventional FMD virus (FMDV) vaccines in pigs has been controversial because the massive prophylactic vaccination could not elicit proper immune response nor prevent the broad spread of FMD outbreak, mainly in pig farms, in South Korea during outbreaks of 2014. In addition, there has been little information on the efficacy of inactivated, high potency, multivalent, oil-based FMDV vaccine in pigs, because an evaluation of FMDV vaccines had been mainly carried out using cattle.

View Article and Find Full Text PDF

We report classical swine fever outbreaks occurring in naive pig herds on Jeju Island, South Korea, after the introduction of the LOM vaccine strain. Two isolates from sick pigs had >99% identity with the vaccine stain. LOM strain does not appear safe; its use in the vaccine should be reconsidered.

View Article and Find Full Text PDF