Publications by authors named "Dong-Qin He"

Enhancing sludge dewatering is of importance in reducing environmental burden and disposal costs. In this work, a cationic surfactant, cetyl trimethyl ammonium bromide (CTAB), was combined with Fenton's reagent for sludge dewatering. Results show that the Fenton-CTAB conditioning significantly promotes the sludge dewatering.

View Article and Find Full Text PDF

Fenton reaction is widely used for hazardous pollutant degradation. Reducing agents (RAs) have been proven to be efficient in promoting the generation of HO• in Fenton reaction by accelerating the redox cycle of Fe/Fe. However, the roles of different RAs in Fenton reaction remain unrevealed.

View Article and Find Full Text PDF

Currently the dewatering of activated sludge from wastewater treatment plants is a problem not well solved. Extracellular polymeric substances (EPS), including loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS), are highly hydrated biopolymers and play important roles in sludge dewatering. In the present work, two types of treatments, i.

View Article and Find Full Text PDF

Efficient sludge dewatering methods are highly desired by municipal wastewater treatment plants. In this study, Fe@Fe2O3 nanomaterial, combined with polydiallyldimethylammonium chloride (PDMDAAC) and H2SO4, was used for sludge dewatering. This composite conditioner exhibited an excellent dewatering capability.

View Article and Find Full Text PDF

Membrane fouling induced by natural organic matter (NOM) negatively affects the performance of ultrafiltration (UF) technology in producing drinking water. Divalent cation is found to be an important factor that affects the NOM-induced membrane fouling process. In this work, attenuated total reflection-Fourier transformation infrared spectroscopy (ATR-FTIR) coupled with quartz crystal microbalance (QCM), assisted by isothermal titration calorimetry (ITC), is used to explore the contribution of Mg(2+) and Ca(2+), the two abundant divalent cations in natural water, to the UF membrane fouling caused by humic acid (HA) at a molecular level.

View Article and Find Full Text PDF

Copper nanoparticles (CuNPs) are widely used and inevitably released into aqueous environments, causing ecological and health risks. Ubiquitous natural organic matter (NOM) might affect the copper release behaviors from CuNPs and their toxicity. This work aims to elucidate how NOM affects copper release from CuNPs, with a focus on the impacts of NOM properties and the NOM-CuNPs interaction mechanism.

View Article and Find Full Text PDF