Publications by authors named "Dong-Pyo Jang"

This research aims to establish a practical stress detection framework by integrating physiological indicators and deep learning techniques. Utilizing a virtual reality (VR) interview paradigm mirroring real-world scenarios, our focus is on classifying stress states through accessible single-channel electroencephalogram (EEG) and galvanic skin response (GSR) data. Thirty participants underwent stress-inducing VR interviews, with biosignals recorded for deep learning models.

View Article and Find Full Text PDF

Fast-scan cyclic voltammetry (FSCV) is a widely used technique for detecting neurotransmitters. However, electrode fouling can negatively impact its accuracy and sensitivity. Fouling refers to the accumulation of unwanted materials on the electrode surface, which can alter its electrochemical properties and reduce its sensitivity and selectivity.

View Article and Find Full Text PDF

This study examined the relationship between loneliness levels and daily patterns of mobile keystroke dynamics in healthy individuals. Sixty-six young healthy Koreans participated in the experiment. Over five weeks, the participants used a custom Android keyboard.

View Article and Find Full Text PDF
Article Synopsis
  • - Serotonin (5-HT) is a key neurotransmitter in the brain that influences mood and behaviors, and is linked to mental health issues like depression, addiction, and schizophrenia.
  • - There are various techniques for measuring serotonin in the brain, each with unique characteristics such as size, resolution, and measurement capabilities that researchers must consider for their studies.
  • - This review discusses current methods for measuring serotonin, its role in psychiatric conditions, and the potential of advanced systems like deep brain stimulation for clinical applications.
View Article and Find Full Text PDF

Background: Temporal interference stimulation (TIS) is a neuromodulation technique that could stimulate deep brain regions by inducing interfering electrical signals based on high-frequency electrical stimulations of multiple electrode pairs from outside the brain. Despite numerous TIS studies, however, there has been limited investigation into the neurochemical effects of TIS.

Objective: We performed two experiments to investigate the effect of TIS on the medial forebrain bundle (MFB)-evoked phasic dopamine (DA) response.

View Article and Find Full Text PDF

Tourette syndrome is a childhood-onset neuropsychiatric disorder characterized by intrusive motor and vocal tics that can lead to self-injury and deleterious mental health complications. While dysfunction in striatal dopamine neurotransmission has been proposed to underlie tic behaviour, evidence is scarce and inconclusive. Deep brain stimulation (DBS) of the thalamic centromedian parafascicular complex (CMPf), an approved surgical interventive treatment for medical refractory Tourette syndrome, may reduce tics by affecting striatal dopamine release.

View Article and Find Full Text PDF

Tonic extracellular neurotransmitter concentrations are important modulators of central network homeostasis. Disruptions in these tonic levels are thought to play a role in neurologic and psychiatric disease. Therefore, ways to improve their quantification are actively being investigated.

View Article and Find Full Text PDF

. Temporal interference stimulation (TIS) has shown the potential as a new method for selective stimulation of deep brain structures in small animal experiments. However, it is challenging to deliver a sufficient temporal interference (TI) current to directly induce an action potential in the deep area of the human brain when electrodes are attached to the scalp because the amount of injection current is generally limited due to safety issues.

View Article and Find Full Text PDF

Neurotransmitters, such as dopamine and serotonin, are responsible for mediating a wide array of neurologic functions, from memory to motivation. From measurements using fast scan cyclic voltammetry (FSCV), one of the main tools used to detect synaptic efflux of neurochemicals , principal component regression (PCR), has been commonly used to predict the identity and concentrations of neurotransmitters. However, the sensitivity and discrimination performance of PCR have room for improvement, especially for analyzing mixtures of similar oxidizable neurochemicals.

View Article and Find Full Text PDF

Our knowledge concerning visual-spatial memory related phase synchronization within the ipsilateral hippocampus or between contralateral hippocampi during memory encoding in humans is currently limited. The present study examines the relationship between phase synchronization within the hippocampus and memory performance during virtual navigation in an object-location memory navigation task using intracranial depth electrodes in human subjects. Specifically, we focus on the phase synchronization ratio between periods when the target object was in and out of visual focus.

View Article and Find Full Text PDF

Objective: This study aimed to analyze the effect of object-location binding on the visual working memory workload. For this study, thirty healthy subjects were recruited, and they performed the "What was where" task, which was modified to evaluated object-location binding memory. We analyzed their ERP and behavior response.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have developed a silicon-based neurochemical analyzer that can be implanted in the brain to monitor neurotransmitters like dopamine wirelessly and continuously.
  • The device utilizes advanced materials, including 2D transition metal dichalcogenides and nanoparticles, allowing for precise detection and response to neurotransmitter levels.
  • In vivo tests show the analyzer's effectiveness compared to traditional carbon-fiber electrodes, suggesting it could be a valuable tool for diagnosing and studying neurodegenerative diseases.
View Article and Find Full Text PDF

Fast-scan cyclic voltammetry (FSCV) is a technique for measuring phasic release of neurotransmitters with millisecond temporal resolution. The current data are captured by carbon fiber microelectrodes, and non-Faradaic current is subtracted from the background current to extract the Faradaic redox current through a background subtraction algorithm. FSCV is able to measure neurotransmitter concentrations down to the nanomolar scale, making it a very robust and useful technique for probing neurotransmitter release dynamics and communication across neural networks.

View Article and Find Full Text PDF

Here, we present the development of a novel voltammetric technique, N-shaped multiple cyclic square wave voltammetry (N-MCSWV) and its application . It allows quantitative measurements of tonic extracellular levels of serotonin with mitigated fouling effects. N-MCSWV enriches the electrochemical information by generating high dimensional voltammograms, which enables high sensitivity and selectivity against 5-hydroindoleacetic acid (5-HIAA), dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), histamine, ascorbic acid, norepinephrine, adenosine, and pH.

View Article and Find Full Text PDF

We previously reported on the use of fast cyclic square wave voltammetry (FCSWV) as a new voltammetric technique. Fourier transform electrochemical impedance spectroscopy (FTEIS) has recently been utilized to provide information that enables a detailed analytical description of an electrified interface. In this study, we report on attempts to combine FTEIS with FCSWV (FTEIS-FCSWV) and demonstrate the feasibility of FTEIS-FCSWV in the detection of neurotransmitters, thus giving a new type of electrochemical impedance information such as biofouling on the electrode surface.

View Article and Find Full Text PDF

With the development in the field of neural networks,(XAI), is being studied to ensure that artificial intelligence models can be explained. There are some attempts to apply neural networks to neuroscientific studies to explain neurophysiological information with high machine learning performances. However, most of those studies have simply visualized features extracted from XAI and seem to lack an active neuroscientific interpretation of those features.

View Article and Find Full Text PDF

For over 40 years, microdialysis techniques have been at the forefront in measuring the effects of illicit substances on brain tonic extracellular levels of dopamine that underlie many aspects of drug addiction. However, the size of microdialysis probes and sampling rate may limit this technique's ability to provide an accurate assessment of drug effects in microneural environments. A novel electrochemical method known as multiple-cyclic square wave voltammetry (M-CSWV), was recently developed to measure second-to-second changes in tonic dopamine levels at microelectrodes, providing spatiotemporal resolution superior to microdialysis.

View Article and Find Full Text PDF

Monoamine oxidase (MAO) is believed to mediate the degradation of monoamine neurotransmitters, including dopamine, in the brain. Between the two types of MAO, MAO-B has been believed to be involved in dopamine degradation, which supports the idea that the therapeutic efficacy of MAO-B inhibitors in Parkinson's disease can be attributed to an increase in extracellular dopamine concentration. However, this belief has been controversial.

View Article and Find Full Text PDF

In this article, we present electrochemical interrogation for collision dynamics of electrogenerated individual polybromide ionic liquid (PBIL) droplets through chronoamperometry combined with fast scan cyclic voltammetry (CA-FSCV). In the CA mode of CA-FSCV, a Pt ultramicroelectrode (UME) acts as the electrochemical generator for PBIL droplets by holding the oxidation potential for Br in a given time, while FSCV is repetitively performed at a certain frequency. In the FSCV mode of CA-FSCV, a Pt UME serves as the probe to electrochemically monitor Br reduction for an adsorbed PBIL droplet during collision with a high temporal resolution.

View Article and Find Full Text PDF

Dysregulation of the neurotransmitter dopamine (DA) is implicated in several neuropsychiatric conditions. Multiple-cyclic square-wave voltammetry (MCSWV) is a state-of-the-art technique for measuring tonic DA levels with high sensitivity (<5 nM), selectivity, and spatiotemporal resolution. Currently, however, analysis of MCSWV data requires manual, qualitative adjustments of analysis parameters, which can inadvertently introduce bias.

View Article and Find Full Text PDF

Introduction: Striatal tonic dopamine increases rapidly during global cerebral hypoxia. This phenomenon has previously been studied using microdialysis techniques which have relatively poor spatio-temporal resolution. In this study, we measured changes in tonic dopamine during hypoxia (death) in real time with high spatio-temporal resolution using novel multiple cyclic square wave voltammetry (MCSWV) and conventional fast scan cyclic voltammetry (FSCV) techniques.

View Article and Find Full Text PDF

Current pharmacological treatments for Parkinson's disease (PD) are focused on symptomatic relief, but not on disease modification, based on the strong belief that PD is caused by irreversible dopaminergic neuronal death. Thus, the concept of the presence of dormant dopaminergic neurons and its possibility as the disease-modifying therapeutic target against PD have not been explored. Here we show that optogenetic activation of substantia nigra pars compacta (SNpc) neurons alleviates parkinsonism in acute PD animal models by recovering tyrosine hydroxylase (TH) from the TH-negative dormant dopaminergic neurons, some of which still express DOPA decarboxylase (DDC).

View Article and Find Full Text PDF

Objective: To evaluate the usefulness of histogram analysis of stretched exponential model (SEM) on diffusion-weighted imaging in evaluating clinically significant prostate cancer (CSC).

Methods: A total of 85 patients with prostate cancer underwent 3 T multiparametric MRI, followed by radical prostatectomy. Histogram parameters of the tumor from the SEM [distributed diffusion coefficient (DDC) and α] and the monoexponential model [MEM; apparent diffusion coefficient (ADC)] were evaluated.

View Article and Find Full Text PDF

Although N-shaped fast scan cyclic voltammetry (N-FSCV) is well-established as an electroanalytical method to measure extracellular serotonin concentrations , it is in need of improvement in both sensitivity and selectivity. Based on our previous studies using fast cyclic square-wave voltammetry (FCSWV) for dopamine measurements, we have modified this technique to optimize the detection of serotonin . A series of large amplitude square-shaped potentials was superimposed onto an N-shaped waveform to provide cycling through multiple redox reactions within the N-shaped waveform to enhance the sensitivity and selectivity to serotonin measurement when combined with a two-dimensional voltammogram.

View Article and Find Full Text PDF

Cognitive control is essential for flexible, top-down, goal-directed behavior. Individuals with Internet gaming disorder (IGD) are characterized by impaired prefrontal cortex function and cognitive control. This results in an increase in stimulus-driven habitual behavior, particularly related to pathological gaming.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: