Publications by authors named "Dong-Ping Zhan"

Advanced Ag nanoparticles (Ag NPs) were prepared by wet chemical oxidation-reduction method, using mainly the tannic acid as reducing agent and carboxymethylcellulose sodium as stabilizer. The prepared Ag NPs uniformly disperse and are stable for more than one month without agglomeration. The studies of transmission electron microscopy (TEM) and ultraviolet-visible (UV-vis) absorption spectroscopy indicate that the Ag NPs are in homogeneous sphere with only 4.

View Article and Find Full Text PDF

Proton transfer is crucial for electrocatalysis. Accumulating cations at electrochemical interfaces can alter the proton transfer rate and then tune electrocatalytic performance. However, the mechanism for regulating proton transfer remains ambiguous.

View Article and Find Full Text PDF

Solid/liquid interfacial structure occupies great importance in chemistry, biology, and materials. In this paper, by combining EC-SERS study and DFT calculation, we reveal the adsorption and dimerization of sulfite (SO) at a gold electrode/water solution interface, and establish an adsorption displacement strategy to suppress the dimerization of sulfite. At the gold electrode/sodium sulfite solution interface, at least two layers of SO anions are adsorbed on the electrode surface.

View Article and Find Full Text PDF

The spontaneous α-to-δ phase transition of the formamidinium-based (FA) lead halide perovskite hinders its large scale application in solar cells. Though this phase transition can be inhibited by alloying with methylammonium-based (MA) perovskite, the underlying mechanism is largely unexplored. In this Communication, we grow high-quality mixed cations and halides perovskite single crystals (FAPbI)(MAPbBr) to understand the principles for maintaining pure perovskite phase, which is essential to device optimization.

View Article and Find Full Text PDF

An impedimetric sensor for persistent toxic substances, including organic pollutants and toxic inorganic ions is presented. The persistent toxic substances are detected using an ultrasensitive technique that is based on electron-transfer blockage. This depends on the formation of guest-host complexes, hydrogen bonding, or a cyclodextrin (CD)-metal complex (M(OH)-β-CD) structure between the target pollutants and β-CD.

View Article and Find Full Text PDF