Bioengineering (Basel)
September 2024
Electroencephalography (EEG) helps to assess the electrical activities of the brain so that the neuronal activities of the brain are captured effectively. EEG is used to analyze many neurological disorders, as it serves as a low-cost equipment. To diagnose and treat every neurological disorder, lengthy EEG signals are needed, and different machine learning and deep learning techniques have been developed so that the EEG signals could be classified automatically.
View Article and Find Full Text PDFSpeech emotion recognition (SER) tasks are conducted to extract emotional features from speech signals. The characteristic parameters are analyzed, and the speech emotional states are judged. At present, SER is an important aspect of artificial psychology and artificial intelligence, as it is widely implemented in many applications in the human-computer interface, medical, and entertainment fields.
View Article and Find Full Text PDFFor patients suffering from obstructive sleep apnea and sleep-related breathing disorders, snoring is quite common, and it greatly interferes with the quality of life for them and for the people surrounding them. For diagnosing obstructive sleep apnea, snoring is used as a screening parameter, so the exact detection and classification of snoring sounds are quite important. Therefore, automated and very high precision snoring analysis and classification algorithms are required.
View Article and Find Full Text PDFBackground: This study investigated a safe and effective bolus dose and lockout time for patient-controlled sedation (PCS) with dexmedetomidine for dental treatments. The depth of sedation, vital signs, and patient satisfaction were investigated to demonstrate safety.
Methods: Thirty patients requiring dental scaling were enrolled and randomly divided into three groups based on bolus doses and lockout times: group 1 (low dose group, bolus dose 0.
We propose an automatic sleep stage scoring model, referred to as SeriesSleepNet, based on convolutional neural network (CNN) and bidirectional long short-term memory (bi-LSTM) with partial data augmentation. We used single-channel raw electroencephalography signals for automatic sleep stage scoring. Our framework was focused on time series information, so we applied partial data augmentation to learn the connected time information in small series.
View Article and Find Full Text PDFThe human respiratory systems can be affected by several diseases and it is associated with distinctive sounds. For advanced biomedical signal processing, one of the most complex issues is automated respiratory sound classification. In this research, five Hybrid Interpretable Strategies with Ensemble Techniques (HISET) which are quite interesting and robust are proposed for the purpose of respiratory sounds classification.
View Article and Find Full Text PDFOne of the famous research areas in biomedical engineering and pattern recognition is finger movement classification. For hand and finger gesture recognition, the most widely used signals are the surface electromyogram (sEMG) signals. With the help of sEMG signals, four proposed techniques of finger movement classification are presented in this work.
View Article and Find Full Text PDFA comprehensive analysis of an automated system for epileptic seizure detection is explained in this work. When a seizure occurs, it is quite difficult to differentiate the non-stationary patterns from the discharges occurring in a rhythmic manner. The proposed approach deals with it efficiently by clustering it initially for the sake of feature extraction by using six different techniques categorized under two different methods, e.
View Article and Find Full Text PDFIn comparison to other biomedical signals, electroencephalography (EEG) signals are quite complex in nature, so it requires a versatile model for feature extraction and classification. The structural information that prevails in the originally featured matrix is usually lost when dealing with standard feature extraction and conventional classification techniques. The main intention of this work is to propose a very novel and versatile approach for EEG signal modeling and classification.
View Article and Find Full Text PDFTo classify the texts accurately, many machine learning techniques have been utilized in the field of Natural Language Processing (NLP). For many pattern classification applications, great success has been obtained when implemented with deep learning models rather than using ordinary machine learning techniques. Understanding the complex models and their respective relationships within the data determines the success of such deep learning techniques.
View Article and Find Full Text PDFThe vital data about the electrical activities of the brain are carried by the electroencephalography (EEG) signals. The recordings of the electrical activity of brain neurons in a rhythmic and spontaneous manner from the scalp surface are measured by EEG. One of the most important aspects in the field of neuroscience and neural engineering is EEG signal analysis, as it aids significantly in dealing with the commercial applications as well.
View Article and Find Full Text PDFOne of the major reasons of mortality in human beings is cancer, and there is an absolute necessity for doctors to identify and treat a person suffering from it. Leukemia is a group of blood cancers that usually originates in the bone marrow and results in very high number of abnormal cells. For the diagnosis of cancer, microarray data serves as an important clinical application and serves as a great aid to the entire medical community.
View Article and Find Full Text PDFManual sleep stage scoring is usually implemented with the help of sleep specialists by means of visual inspection of the neurophysiological signals of the patient. As it is a very hectic task to perform, automated sleep stage classification systems were developed in the past, and advancements are being made consistently by researchers. The various stages of sleep are identified by these automated sleep stage classification systems, and it is quite an important step to assist doctors for the diagnosis of sleep-related disorders.
View Article and Find Full Text PDFDisease symptoms often contain features that are not routinely recognized by patients but can be identified through indirect inspection or diagnosis by medical professionals. Telemedicine requires sufficient information for aiding doctors' diagnosis, and it has been primarily achieved by clinical decision support systems (CDSSs) utilizing visual information. However, additional medical diagnostic tools are needed for improving CDSSs.
View Article and Find Full Text PDFComput Intell Neurosci
October 2021
To unlock information present in clinical description, automatic medical text classification is highly useful in the arena of natural language processing (NLP). For medical text classification tasks, machine learning techniques seem to be quite effective; however, it requires extensive effort from human side, so that the labeled training data can be created. For clinical and translational research, a huge quantity of detailed patient information, such as disease status, lab tests, medication history, side effects, and treatment outcomes, has been collected in an electronic format, and it serves as a valuable data source for further analysis.
View Article and Find Full Text PDFIn the field of bioinformatics, feature selection in classification of cancer is a primary area of research and utilized to select the most informative genes from thousands of genes in the microarray. Microarray data is generally noisy, is highly redundant, and has an extremely asymmetric dimensionality, as the majority of the genes present here are believed to be uninformative. The paper adopts a methodology of classification of high dimensional lung cancer microarray data utilizing feature selection and optimization techniques.
View Article and Find Full Text PDFThe game of curling can be considered a good test bed for studying the interaction between artificial intelligence systems and the real world. In curling, the environmental characteristics change at every moment, and every throw has an impact on the outcome of the match. Furthermore, there is no time for relearning during a curling match due to the timing rules of the game.
View Article and Find Full Text PDFFor a comprehensive understanding of the nervous system, several previous studies have examined the network connections between the brain and the heart in diverse conditions. In this study, we identified coupling between the brain and the heart along the continuum of sedation levels, but not in discrete sedation levels (e. g.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
July 2018
In this paper, we propose a highly accurate and fast spelling system that employs multi-modal electroencephalography-electrooculography (EEG-EOG) signals and visual feedback technology. Over the last 20 years, various types of speller systems have been developed in brain-computer interface and EOG/eye-tracking research; however, these conventional systems have a tradeoff between the spelling accuracy (or decoding) and typing speed. Healthy users and physically challenged participants, in particular, may become exhausted quickly; thus, there is a need for a speller system with fast typing speed while retaining a high level of spelling accuracy.
View Article and Find Full Text PDFReliable electroencephalography (EEG) signatures of transitions between consciousness and unconsciousness under anaesthesia have not yet been identified. Herein we examined network changes using graph theoretical analysis of high-density EEG during patient-titrated propofol-induced sedation. Responsiveness was used as a surrogate for consciousness.
View Article and Find Full Text PDFOn sedation motivated by the clinical needs for safety and reliability, recent studies have attempted to identify brain-specific signatures for tracking patient transition into and out of consciousness, but the differences in neurophysiological effects between 1) the sedative types and 2) the presence/absence of surgical stimulations still remain unclear. Here we used multimodal electroencephalography-functional near-infrared spectroscopy (EEG-fNIRS) measurements to observe electrical and hemodynamic responses during sedation simultaneously. Forty healthy volunteers were instructed to push the button to administer sedatives in response to auditory stimuli every 9-11 s.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2017
How brain dynamics change across conscious states, including reliable signatures of the transitions between unconsciousness and consciousness, remains unclear. In this work, we addressed the changes in functional brain networks during self-titrated midazolam sedation using high-density electroencephalography (EEG) in ten subjects. We were particularly interested in the underlying network alterations, identified with graph theory, associated with transitions between states of consciousness.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
February 2018
Most event-related potential (ERP)-based brain-computer interface (BCI) spellers primarily use matrix layouts and generally require moderate eye movement for successful operation. The fundamental objective of this paper is to enhance the perceptibility of target characters by introducing motion stimuli to classical rapid serial visual presentation (RSVP) spellers that do not require any eye movement, thereby applying them to paralyzed patients with oculomotor dysfunctions. To test the feasibility of the proposed motion-based RSVP paradigm, we implemented three RSVP spellers: 1) fixed-direction motion (FM-RSVP); 2) random-direction motion (RM-RSVP); and 3) (the conventional) non-motion stimulation (NM-RSVP), and evaluated the effect of the three different stimulation methods on spelling performance.
View Article and Find Full Text PDFObjective: Most existing brain-computer interface (BCI) designs based on steady-state visual evoked potentials (SSVEPs) primarily use low frequency visual stimuli (e.g., <20 Hz) to elicit relatively high SSVEP amplitudes.
View Article and Find Full Text PDF