Forests play a key role in regulating the global carbon cycle, a substantial portion of which is stored in aboveground biomass (AGB). It is well understood that biodiversity can increase the biomass through complementarity and mass-ratio effects, and the contribution of environmental factors and stand structure attributes to AGB was also observed. However, the relative influence of these factors in determining the AGB of forests remains poorly understood.
View Article and Find Full Text PDFAlthough the relationship between biodiversity and ecosystem functioning has been extensively studied, it remains unclear if the relationships of biodiversity with productivity and its spatial stability vary along productivity gradients in natural ecosystems. Based on a large dataset from 2324 permanent forest inventory plots across northeastern China, we examined the intensity of species richness (SR) and tree size diversity (Hd) effects on aboveground wood productivity (AWP) and its spatial stability among different productivity levels. Structural equation modeling was applied, integrating abiotic (climate and soil) and biotic (stand density) factors.
View Article and Find Full Text PDF