This study investigates the effect of silicon carbon nitride (SiCN) as an interlayer for ZnO-based resistive random access memory (RRAM). SiCN was deposited using plasma-enhanced chemical vapor deposition with controlled carbon content, achieved by varying the partial pressure of tetramethylsilane (4MS). Our results indicate that increasing the carbon concentration enhances the endurance of RRAM devices but reduces the on/off ratio.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2022
In this study, a silicon carbon nitride (SiCN) thin film was grown with a thickness of 5~70 nm by the plasma-enhanced chemical vapor deposition (PECVD) method, and the oxygen permeation characteristics were analyzed according to the partial pressure ratio (PPR) of tetramethylsilane (4MS) to the total gas amount during the film deposition. X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and X-ray reflectivity (XRR) were used to investigate the composition and bonding structures of the SiCN film. An atomic force microscope (AFM) was used to examine the surface morphology of the SiCN films to see the porosity.
View Article and Find Full Text PDF