With reduced dimensionality and a high surface area-to-volume ratio, two-dimensional (2D) semiconductors exhibit intriguing electronic properties that are exceptionally sensitive to surrounding environments, including directly interfacing gate dielectrics. These influences are tightly correlated to their inherent behavior, making it critical to examine when extrinsic charge carriers are intentionally introduced to the channel for complementary functionality. This study explores the physical origin of the competitive transition between intrinsic and extrinsic charge carrier conduction in extrinsically -doped MoS, highlighting the central role of interactions of the channel with amorphous gate dielectrics.
View Article and Find Full Text PDFRecent advancements in phase-change memory (PCM) technology have predominantly stemmed from material-level designs, which have led to fast and durable device performances. However, there remains a pressing need to address the enormous energy consumption through device-level electrothermal solutions. Thus, the concept of a 3D heater-all-around (HAA) PCM fabricated along the vertical nanoscale hole of dielectric/metal/dielectric stacks is proposed.
View Article and Find Full Text PDFTwo-dimensional materials and their heterostructures have thus far been identified as leading candidates for nanoelectronics owing to the near-atom thickness, superior electrostatic control, and adjustable device architecture. These characteristics are indeed advantageous for neuro-inspired computing hardware where precise programming is strongly required. However, its successful demonstration fully utilizing all of the given benefits remains to be further developed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2022
To implement artificial neural networks (ANNs) based on memristor devices, it is essential to secure the linearity and symmetry in weight update characteristics of the memristor, and reliability in the cycle-to-cycle and device-to-device variations. This study experimentally demonstrated and compared the filamentary and interface-type resistive switching (RS) behaviors of tantalum oxide (TaO and TaO)-based devices grown by atomic layer deposition (ALD) to propose a suitable RS type in terms of reliability and weight update characteristics. Although TaO is a strong candidate for memristor, the filament-type RS behavior of TaO does not fit well with ANNs demanding analog memory characteristics.
View Article and Find Full Text PDFThe resistive switching behavior of the solution processed SiO device was investigated by inserting TiO nanoparticles (NPs). Compared to the pristine SiO device, the TiO NPs inserted SiO (SiO@TiO NPs) device achieves outstanding switching characteristics, namely a higher ratio of SET/RESET, lower operating voltages, improved cycle-to-cycle variability, faster switching speed, and multiple-RESET states. Density functional theory calculation (DFT) and circuit breaker simulation (CB) were used to detail the origin of the outstanding switching characteristic of the SiO@TiO NPs.
View Article and Find Full Text PDFNeural networks trained by backpropagation have achieved tremendous successes on numerous intelligent tasks. However, naïve gradient-based training and updating methods on memristors impede applications due to intrinsic material properties. Here, we built a 39 nm 1 Gb phase change memory (PCM) memristor array and quantified the unique resistance drift effect.
View Article and Find Full Text PDFTransition metal dichalcogenides (TMDCs) are promising next-generation materials for optoelectronic devices because, at subnanometer thicknesses, they have a transparency, flexibility, and band gap in the near-infrared to visible light range. In this study, we examined continuous, large-area MoSe film, grown by molecular beam epitaxy on an amorphous SiO/Si substrate, which facilitated direct device fabrication without exfoliation. Spectroscopic measurements were implemented to verify the formation of a homogeneous MoSe film by performing mapping on the micrometer scale and measurements at multiple positions.
View Article and Find Full Text PDFThe decidedly unusual co-occurrence of bipolar, complementary, and unipolar resistive switching (BRS, CRS, and URS, respectively) behavior under the same high set current compliance (set-CC) is discussed on the basis of filament geometry in a Pt/SiOx/TiN stack. Set-CC-dependent scaling behavior with relations Ireset ~ R0(-α) and Vreset ~ R0(-β) differentiates BRS under low set-CC from other switching behaviors under high set-CC due to a low α and β involving a narrow filamentary path. Because such co-occurrence is observed only in the case of a high α and β involving a wide filamentary path, such a path can be classified into three different geometries according to switching behavior in detail.
View Article and Find Full Text PDF