Publications by authors named "Dong-Hoon Hwang"

Traumatic damage to the spinal cord does not spontaneously heal, often leading to permanent tissue defects. We have shown that injection of imidazole-poly(organophosphazene) hydrogel (I-5) bridges cystic cavities with the newly assembled fibronectin-rich extracellular matrix (ECM). The hydrogel-created ECM contains chondroitin sulfate proteoglycans (CSPGs), collagenous fibrils together with perivascular fibroblasts, and various fibrotic proteins, all of which could hinder axonal growth in the matrix.

View Article and Find Full Text PDF

Preconditioning peripheral nerve injury enhances the intrinsic growth capacity of DRGs sensory axons by inducing transcriptional upregulation of the regeneration-associated genes (RAGs). However, it is still unclear how preconditioning injury leads to the orchestrated induction of many RAGs. The present study identified proto-oncogene as a transcriptional hub gene to regulate the expression of a distinct subset of RAGs in DRGs following the preconditioning injury.

View Article and Find Full Text PDF

Many previous studies have shown reduced glucose uptake in the ischemic brain. In contrast, in a permanent unilateral common carotid artery occlusion (UCCAO) mouse model, our pilot experiments using 18F-fluorodeoxyglucose positron emission tomography (FDG PET) revealed that a subset of mice exhibited conspicuously high uptake of glucose in the ipsilateral hemisphere at 1 week post-occlusion (asymmetric group), whereas other mice showed symmetric uptake in both hemispheres (symmetric group). Thus, we aimed to understand the discrepancy between the two groups.

View Article and Find Full Text PDF

Ischemic white matter injuries underlie cognitive decline in the elderly and vascular dementia. Ischemia in the subcortical white matter is caused by chronic reduction of blood flow due to narrowing of small arterioles. However, it remains unclear how chronic ischemia leads to white matter pathology.

View Article and Find Full Text PDF

Survival and migration of transplanted neural stem cells (NSCs) are prerequisites for therapeutic benefits in spinal cord injury. We have shown that survival of NSC grafts declines after transplantation into the injured spinal cord, and that combining treadmill training (TMT) enhances NSC survival via insulin-like growth factor-1 (IGF-1). Here, we aimed to obtain genetic evidence that IGF-1 signaling in the transplanted NSCs determines the beneficial effects of TMT.

View Article and Find Full Text PDF

The cystic cavity that develops following injuries to brain or spinal cord is a major obstacle for tissue repair in central nervous system (CNS). Here we report that injection of imidazole-poly(organophosphazenes) (I-5), a hydrogel with thermosensitive sol-gel transition behavior, almost completely eliminates cystic cavities in a clinically relevant rat spinal cord injury model. Cystic cavities are bridged by fibronectin-rich extracellular matrix.

View Article and Find Full Text PDF

CNS neurons in adult mammals do not spontaneously regenerate axons after spinal cord injury. Preconditioning peripheral nerve injury allows the dorsal root ganglia (DRG) sensory axons to regenerate beyond the injury site by promoting expression of regeneration-associated genes. We have previously shown that peripheral nerve injury increases the number of macrophages in the DRGs and that the activated macrophages are critical to the enhancement of intrinsic regeneration capacity.

View Article and Find Full Text PDF

Combining cell transplantation with activity-based rehabilitation is a promising therapeutic approach for spinal cord repair. The present study was designed to investigate potential interactions between the transplantation (TP) of neural stem cells (NSCs) obtained at embryonic day 14 and treadmill training (TMT) in promoting locomotor recovery and structural repair in rat contusive injury model. Combination of TMT with NSC TP at 1 week after injury synergistically improved locomotor function.

View Article and Find Full Text PDF

Traumatic spinal cord injury (SCI) often leads to debilitating loss of locomotor function. Neuroplasticity of spinal circuitry underlies some functional recovery and therefore represents a therapeutic target to improve locomotor function following SCI. However, the cellular and molecular mechanisms mediating neuroplasticity below the lesion level are not fully understood.

View Article and Find Full Text PDF

Although the central branches of the dorsal root ganglion (DRG) sensory neurons do not spontaneously regenerate, a conditioning peripheral injury can promote their regeneration. A potential role of macrophages in axonal regeneration was proposed, but it has not been critically addressed whether macrophages play an essential role in the conditioning injury model. After sciatic nerve injury (SNI) in rats, the number of macrophages in DRGs gradually increased by day 7.

View Article and Find Full Text PDF

Real-time pulse measurements of nano-scale field effect transistors (FETs) are reported. We demonstrate the direct monitoring of the real-time current of bottom-up assembled silicon nanowire FET and top-down fabricated gate-all-around silicon nanowire FET, both with the diameter of approximately 50 nm. We demonstrate that the displacement current can be cancelled out from the measured pulse responses.

View Article and Find Full Text PDF

Background: Traumatic spinal cord injury (SCI) causes acute neuronal death followed by delayed secondary neuronal damage. However, little is known about how microenvironment regulating cells such as microglia, astrocytes, and blood inflammatory cells behave in early SCI states and how they contribute to delayed neuronal death.

Methods: We analyzed the behavior of neurons and microenvironment regulating cells using a contusion-induced SCI model, examining early (3-6 h) to late times (14 d) after the injury.

View Article and Find Full Text PDF

Background Aims: Combinatorial approaches employing diverse therapeutic modalities are required for clinically relevant repair of injured spinal cord in human patients. Before translation into the clinic, the feasibility and therapeutic potential of such combinatorial strategies in larger animal species need to be examined.

Methods: The present study tested the feasibility of implanting polymer scaffolds via neural stem cell (NSC) delivery in a canine spinal cord injury (SCI) model.

View Article and Find Full Text PDF

The present study was undertaken to examine multifaceted therapeutic effects of vascular endothelial growth factor (VEGF) in a rat spinal cord injury (SCI) model, focusing on its capability to stimulate proliferation of endogenous glial progenitor cells. Neural stem cells (NSCs) can be genetically modified to efficiently transfer therapeutic genes to diseased CNS. We adopted an ex vivo approach using immortalized human NSC line (F3 cells) to achieve stable and robust expression of VEGF in the injured spinal cord.

View Article and Find Full Text PDF

Background And Purpose: N-methyl-D-aspartate (NMDA)-mediated neurotoxicity and oxidative stress have been implicated in the etiology of amyotrophic lateral sclerosis (ALS). Memantine is a low-affinity, noncompetitive NMDA receptor antagonist that may protect against motor neuron degeneration.

Methods: Thirty transgenic mice expressing the G93A SOD1 mutation were randomly divided into control, low-dose memantine (30 mg/kg/day), and high-dose memantine (90 mg/kg/day) groups, with memantine supplied daily with drinking water beginning at 75 days of age.

View Article and Find Full Text PDF

Traumatic injuries to the spinal cord lead to severe and permanent neurological deficits. Although no effective therapeutic option is currently available, recent animal studies have shown that cellular transplantation strategies hold promise to enhance functional recovery after spinal cord injury (SCI). This review is to analyze the experiments where transplantation of stem/progenitor cells produced successful functional outcome in animal models of SCI.

View Article and Find Full Text PDF