Diesel fuel can produce higher concentrations of H₂ and CO gases than other types of hydrocarbon fuels via a reforming reaction for solid oxide fuel cells (SOFCs). However, in addition to sulfur compounds and aromatic hydrocarbons in diesel fuel are a major cause of catalyst deactivation. To elucidate the phenomenon of catalyst deactivation in the presence of an aromatic hydrocarbon, dodecane (CH) and hexadecane (CH) were blended with an aromatic hydrocarbon such as 1-methylnaphthalene (CH) to obtain a diesel surrogate fuel.
View Article and Find Full Text PDF