Publications by authors named "Dong-An Wang"

Due to the lack of blood vessels and nerves, the ability of cartilage to repair itself is limited, and the injury of articular cartilage urgently needs effective treatment. Currently, the limitation of clinical repair for cartilage defects is that it is difficult to form pure hyaline cartilage repair, and the source of cartilage tissue and cells is limited. To obtain high-purity regenerated hyaline cartilage, we proposed to construct an injectable hydrogel precursor by using human living hyaline cartilage graft (hLhCG) secreted by human chondrocytes as the dispersed phase and fibrinogen solution as the continuous phase, by double injection with thrombin, three-dimensional network hydrogel structure was formed under the action of thrombin to repair joint defects.

View Article and Find Full Text PDF

The rotator cuff tendon-bone interface tissue exhibits high heterogeneity in its composition and structure, with collagen being its primary component. Here, we prepared tissue-engineered decellularized live hyaline cartilage grafts (dLHCG), this dLHCG scaffold's bioactive ECM mainly consists of collagen II, proteoglycans, and fibronectin, presenting a cartilage-like lacuna microstructure. The dLHCG scaffold loaded human amniotic mesenchymal stem cells (hAMSCs) and adipose stem cells (ADSCs) were implanted into the interface.

View Article and Find Full Text PDF

Advancements in biomaterial-based spinal cord tissue engineering technology have profoundly influenced regenerative medicine, providing innovative solutions for both spinal cord organoid development and engineered spinal cord injury (SCI) repair. In spinal cord organoids, biomaterials offer a supportive microenvironment that mimics the natural extracellular matrix, facilitating cell differentiation and organization and advancing the understanding of spinal cord development and pathophysiology. Furthermore, biomaterials are essential in constructing engineered spinal cords for SCI repair.

View Article and Find Full Text PDF

Due to the absence of nerves and blood vessels in articular cartilage, its regeneration and repair present a significant and complex challenge in osteoarthritis treatment. Developing a specialized physical and chemical microenvironment supporting cell growth has been difficult in cartilage grafting, especially when aiming for comprehensive biomimetic solutions. Based on previous research, we have designed a tissue-engineered decellularized living hyaline cartilage graft (dLhCG).

View Article and Find Full Text PDF

Efficient drug delivery across the blood-brain barrier is imperative for treating glioblastoma (GBM). This study utilized the GBM cell membrane to construct a biomimetic targeted nanosystem (GMNPs@AMD/RAPA) that hierarchically releases the CXCR4 antagonist AMD3100 and the mTOR pathway inhibitor rapamycin (RAPA) for reprogramming the tumor immune microenvironment and suppressing the progression of GBM. By initially inhibiting the CXCL12/CXCR4 axis, the tumor microenvironment (TME) was reprogrammed to enhance the infiltration of cytotoxic T lymphocytes (CTLs) into the TME while suppressing tumor cell survival, proliferation, and angiogenesis.

View Article and Find Full Text PDF
Article Synopsis
  • Repairing articular cartilage defects has been a significant challenge, but injectable materials present a new, minimally invasive surgical option.
  • The study developed collagen type II-based materials, successfully achieving full repair and regeneration of cartilage defects, showing properties similar to native cartilage.
  • Further analysis indicated that these materials altered cartilage-related pathways and the immune microenvironment, offering a promising solution for enhancing cartilage repair while protecting surrounding tissue.
View Article and Find Full Text PDF

Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by the disruption of the intestinal epithelial barrier. This study described the synthesis and characterization of CCM-Co-ZIF-8, a novel composite material with enzyme-like activities similar to catalase, peroxidase, and superoxide dismutase. CCM-Co-ZIF-8 demonstrated the ability to scavenge reactive oxygen species that play a critical role in UC pathogenesis.

View Article and Find Full Text PDF

With the increasing research and deepening understanding of the glioblastoma (GBM) tumour microenvironment (TME), novel and more effective therapeutic strategies have been proposed. The GBM TME involves intricate interactions between tumour and non-tumour cells, promoting tumour progression. Key therapeutic goals for GBM treatment include improving the immunosuppressive microenvironment, enhancing the cytotoxicity of immune cells against tumours, and inhibiting tumour growth and proliferation.

View Article and Find Full Text PDF

The unique gradient structure and complex composition of osteochondral tissue pose significant challenges in defect regeneration. Restoration of tissue heterogeneity while maintaining hyaline cartilage components has been a difficulty of an osteochondral tissue graft. A novel class of multi-crosslinked polysaccharide-based three-dimensional (3D) printing inks, including decellularized natural cartilage (dNC) and nano-hydroxyapatite, was designed to create a gradient scaffold with a robust interface-binding force.

View Article and Find Full Text PDF

Cartilage injuries are escalating worldwide, particularly in aging society. Given its limited self-healing ability, the repair and regeneration of damaged articular cartilage remain formidable challenges. To address this issue, nanomaterials are leveraged to achieve desirable repair outcomes by enhancing mechanical properties, optimizing drug loading and bioavailability, enabling site-specific and targeted delivery, and orchestrating cell activities at the nanoscale.

View Article and Find Full Text PDF

The bidirectional relationship between osteochondral defects (OCD) and osteoarthritis (OA), with each condition exacerbating the other, makes OCD regeneration in the presence of OA challenging. Type II collagen (Col2) is important in OCD regeneration and the management of OA, but its potential applications in cartilage tissue engineering are significantly limited. This study investigated the regeneration capacity of Col2 scaffolds in critical-sized OCDs under surgically induced OA conditions and explored the underlying mechanisms that promoted OCD regeneration.

View Article and Find Full Text PDF

Joint cartilage lesions affect the global population in the current aging society. Maintenance and rejuvenation of articular cartilage with hyaline phenotype remains a challenge as the underlying mechanism has not been completely understood. Here, we have designed and performed a mechanism study using scaffolds made of type II collagen (Col2) as the 3D cell cultural platforms, on some of which nanoaggregates comprising extracts of chondrocyte membrane (CCM) were coated as the antagonist of Col2.

View Article and Find Full Text PDF

Endochondral ossification (ECO) is a form of bone formation whereby the newly deposited bone replaces the cartilage template. A decellularized artificial cartilage graft (dLhCG), which is composed of hyaline cartilage matrixes, has been developed in our previous study. Herein, the osteogenesis of bone marrow-derived MSCs in the dLhCG through chondrogenic differentiation, chondrocyte hypertrophy, and subsequent transdifferentiation induction has been investigated by simulating the physiological processes of ECO for repairing critical-sized bone defects.

View Article and Find Full Text PDF

Interface tissue repair requires the construction of biomaterials with integrated structures of multiple protein types. Hydrogels that modulate internal porous structures provide a 3D microenvironment for encapsulated cells, making them promise for interface tissue repair. Currently, reduction of intrinsic immunogenicity and increase of bioactive extracellular matrix (ECM) secretion are issues to be considered in these materials.

View Article and Find Full Text PDF

Complications can arise from damaging or removing lymph nodes after surgeries for malignant tumours. Our team has developed an innovative solution to recreate lymph nodes via an engineering approach. Using a Type II collagen scaffold coated with B cell membranes for the sake of attracting T cells in different regions, we could mimic the thymus-dependent and thymus-independent areas in vitro.

View Article and Find Full Text PDF

Catechins from green tea are one of the most effective natural compounds for cancer chemoprevention and have attracted extensive research. Cancer cell-selective apoptosis-inducing properties of catechins depend on efficient intracellular delivery. However, the low bioavailability limits the application of catechins.

View Article and Find Full Text PDF

Aging is inevitable, and how to age healthily is a key concern. Additive manufacturing offers many solutions to this problem. In this paper, we first briefly introduce various 3D printing technologies commonly used in the biomedical field, particularly in aging research and aging care.

View Article and Find Full Text PDF

Traditional joint replacement surgery faces the risk of enormous trauma and secondary revision while using medication to relieve symptoms can cause bone thinning, weight gain and interference with the patient's pain signalling. Medical research has therefore focused on minimally invasive solutions for implanting tissue-engineered scaffolds to induce cartilage regeneration and repair. In cartilage tissue engineering, there are still technical barriers to seed cells, scaffold construction techniques, mechanical properties, and the regulation of the internal environment on the transplanted material.

View Article and Find Full Text PDF

Articular cartilage defects significantly compromise the quality of life in the global population. Although many strategies are needed to repair articular cartilage, including microfracture, autologous osteochondral transplantation, and osteochondral allograft, the therapeutic effects remain suboptimal. In recent years, with the development of cartilage tissue engineering, scientists have continuously improved the formulations of therapeutic cells, biomaterial-based scaffolds, and biological factors, which have opened new avenues for better therapeutics of cartilage lesions.

View Article and Find Full Text PDF

Hematopoietic stem cell (HSC) transplantation remains the most effective therapy for hematologic and lymphoid disorders. However, as the primary therapeutic cells, the source of HSCs has been limited due to the scarcity of matched donors and difficulties in ex vivo expansion. Here, we described a facile method to attempt the expansion of HSCs in vitro through a porous alginate hydrogel-based 3D culture system.

View Article and Find Full Text PDF

Due to the safety issue and poor underwater adhesion of current commercially available bioadhesives, they are hard to apply to in vivo physiological environments and more diverse medical use conditions. In this study, a novel and facile bioadhesive for underwater medical applications are designed based on the coacervation of electrostatic interactions and hydrophobic interactions, with the introduction of catechin as a provider of catechol moieties for adhesion to surrounding tissues. The orange-colored bio-adhesive, named PcC, is generated within seconds by mixing catechin-modified chondroitin sulfate and cholesterol chloroformate-modified polyethyleneimine with agitation.

View Article and Find Full Text PDF

Uncontrolled hemorrhage caused by trauma to internal organs or major arteries poses critical threats to lives. However, rapid hemostasis followed by tissue repair remains an intractable challenge in surgery owing to the lack of ideal internal-use adhesives that can achieve fast and robust wet adhesion and accelerate wound healing. Herein, we develop a robust hemostatic bioadhesive (CAGA) from novel highly-branched aminoethyl gelatin with end-grafted abundant catechol (Gel-AE-Ca).

View Article and Find Full Text PDF

Various scaffolding systems have been attempted to facilitate vascularization in tissue engineering by optimizing biophysical properties (e.g., vascular-like structures, porous architectures, surface topographies) or loading biochemical factors (e.

View Article and Find Full Text PDF

Haematopoietic stem cells are the basis for building and maintaining lifelong haematopoietic mechanisms and an important resource for the treatment of blood disorders. Haematopoietic niches are a microenvironment in the body where stem cells tend to accumulate, with some nurse cells protecting and regulating stem cells. On the basis of biology, materials science, and engineering, researchers have constructed stem cell niches to address the current clinical shortage of stem cells and to explore stem cell behaviour for biomedical research.

View Article and Find Full Text PDF