Publications by authors named "Dong Van Dao"

Warm mix asphalt (WMA) technology, taking advantage of reclaimed asphalt pavements, has gained increasing attention from the scientific community. The determination of technical specifications of such a type of asphalt concrete is crucial for pavement design, in which the asphalt concrete dynamic modulus (E*) of elasticity is amongst the most critical parameters. However, the latter could only be determined by complicated, costly, and time-consuming experiments.

View Article and Find Full Text PDF

Development of Foamed Concrete (FC) and incessant increases in fabrication technology have paved the way for many promising civil engineering applications. Nevertheless, the design of FC requires a large number of experiments to determine the appropriate Compressive Strength (CS). Employment of machine learning algorithms to take advantage of the existing experiments database has been attempted, but model performance can still be improved.

View Article and Find Full Text PDF

In this study, we developed Different Artificial Intelligence (AI) models namely Artificial Neural Network (ANN), Adaptive Network based Fuzzy Inference System (ANFIS) and Support Vector Machine (SVM) for the prediction of Compression Coefficient of soil (Cc) which is one of the most important geotechnical parameters. A Monte Carlo approach was used for the sensitivity analysis of the AI models and input parameters. For the construction and validation of the models, 189 soft clayey soil samples were analyzed.

View Article and Find Full Text PDF

Geopolymer concrete (GPC) has been used as a partial replacement of Portland cement concrete (PCC) in various construction applications. In this paper, two artificial intelligence approaches, namely adaptive neuro fuzzy inference (ANFIS) and artificial neural network (ANN), were used to predict the compressive strength of GPC, where coarse and fine waste steel slag were used as aggregates. The prepared mixtures contained fly ash, sodium hydroxide in solid state, sodium silicate solution, coarse and fine steel slag aggregates as well as water, in which four variables (fly ash, sodium hydroxide, sodium silicate solution, and water) were used as input parameters for modeling.

View Article and Find Full Text PDF