Publications by authors named "Dong Quy Hoang"

The utilization of agricultural by-products for the synthesis of hybrid nanomaterials represents an environmentally sustainable approach. This research aims to comprehensively investigate high-performance silver and copper nanoparticles hybrid materials based on carboxymethyl-modified cellulose / lignin derived from rice husks (CMC / CML-AgNPs and CMC / CML-CuONPs) and apply them for antimicrobial activities. CMC / CML was used to reduce Ag / Cu cations to the atomic level and then efficiently stabilize Ag / CuO nanoparticles, an eco-friendly method and sustainable development.

View Article and Find Full Text PDF

Lightweight biobased insulation polyurethane (BPU) composite foams with high fire-resistance efficiency are interested in building effective energy and low environmental impact today. This study focuses on manufacturing lightweight BPU from liquefied bamboo polyols and biomass resources, including rice husk and wood flour. Then, they are combined with three flame retardant (FR) additives, such as aluminum diethyl phosphinate, aluminum trihydroxide, and diammonium phosphate, to improve their fire resistance performance.

View Article and Find Full Text PDF

Here, we prepared ionically crosslinked films using pectin extracted from agro-wastes, specifically ambarella peels (AFP) and jackfruit seed slimy sheath (JFS). Physiochemical properties of pectins, including moisture content, molecular weight (Mw), degree of esterification (DE), and galacturonic acid (GA), were analyzed. Optimal extraction was determined, i.

View Article and Find Full Text PDF

() and () mainly spread through airborne fungal spores. An effective control to impede the dissemination of the spores of in the air affecting the environment and food was carried out. This study focuses on the sustainable rice husk-extracted lignin, nanolignin, lignin/n-lignin capped silver nanoparticles used for fungal growth inhibition.

View Article and Find Full Text PDF

Searching for thiosemicarbazone derivatives with the potential to inhibit acetylcholinesterase for the treatment of Alzheimer's disease (AD) is an important current goal. The QSAR, QSAR, and QSAR models were constructed using binary fingerprints and physicochemical (PC) descriptors of 129 thiosemicarbazone compounds screened from a database of 3791 derivatives. The and values for the QSAR, QSAR, and QSAR models are greater than 0.

View Article and Find Full Text PDF

Nanostructured hybrid materials, fabricated by combining nanosilica (n-S) obtained from rice husk and oligochitosan (OC) obtained from the shrimp shell, are environmentally friendly substances that can applied in green agriculture. In this study, 50 mg/L of nanostructured hybrid materials were applied on lettuce (Lactuca sativa L. var.

View Article and Find Full Text PDF

Antibacterial materials have been developed for a long time but bacteria adapt very quickly and become resistant to these materials. This study focuses on the synthesis of a hybrid material system from lignin and silver/silica nanoparticles (Lig@Ag/SiO NPs) which were used against bacteria including Escherichia coli (E. coli) and Staphylococcus aureus (S.

View Article and Find Full Text PDF

A novel method of chemical upcycling of used poly(ethylene terephthalate) (PET) bottles by acidolysis with succinic acid (SA) was performed under microwave irradiation. The long polyester chain of PET was efficiently fragmented into small molecules and oligomers, such as terephthalic acid and α,ω-dicarboxylic acid oligo(ethylene succinate-co-terephthalate) (OEST). Various input molar ratios of SA/PET from 1.

View Article and Find Full Text PDF

Water contamination is emerging as the most critical global issues in the world, calling for the treatment eco-techniques. Taking advantage of biowastes as adsorbent materials is not only in accordance with the purpose of environmental protection but also enhance the higher value-added products. In this work, water hyacinth () powder was used as an efficient adsorbent for the removal of crystal violet from aqueous solutions.

View Article and Find Full Text PDF

In the context of novel environmental and energy regulations in construction (RE2020), biocomposites derived from bamboo fibers, bamboo powders, and biodegradable poly(lactic)acid polymer, all of which are renewable resources, have been investigated to meet the criteria of the novel regulations. In this work, the biocomposites were manufactured by twin-screw internal mixing at 170 °C for 5 min with a rotation speed of 60 rpm. The composites sheets were then shaped on a hydraulic press at 185 °C.

View Article and Find Full Text PDF

The characteristics of aerogel materials such as the low density and large surface area enable them to adsorb large amounts of substances, so they show great potential for application in industrial wastewater treatment. Herein, using a combination of completely environmentally friendly materials such as cellulose nanofibers (CNFs) extracted from the petioles of the nipa palm tree and graphene oxide (GO) fabricated by simple solvent evaporation, a composite aerogel was prepared by a freeze-drying method. The obtained aerogel possessed a light density of 0.

View Article and Find Full Text PDF

This study describes the biosynthesis of gold nanoparticles (AuNPs) using the extract of in the buffer zone of Bach Ma National Park, Vietnam, as a reducing and protecting agent using microwave-assisted synthesis. The as-synthesized AuNPs were characterized using transmission electron microscopy, scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. Compared to the conventional method, the proposed microwave-assisted method produced AuNPs having a small size of 22.

View Article and Find Full Text PDF

Rice husk is one of the most abundant biomass resources in the world, yet it is not effectively used. This study focuses on the sustainably rice-husk-extracted lignin, nano-lignin (n-Lignin), lignin-capped silver nanoparticles (LCSN), n-Lignin-capped silver nanoparticles (n-LCSN), and lignin-capped silica-silver nanoparticles (LCSSN), and using them for antibacterial activities. The final n-Lignin-based products had a sphere-like structure, of which the size varied between 50 and 80 nm.

View Article and Find Full Text PDF

The chemical recycling of postconsumer poly(ethylene terephthalate) (PET) bottles to produce highly thermally stable polyurethane foam (r-PUF) with excellent flame-retardant (FR) performance could be applied on an industrial scale to create a sustainable recycling industry. The advantage of oligo-ester-ether-diol obtained from waste PET glycolysis is its application in r-PUF, generating a durable foam with excellent fire resistance at rather low loadings of phosphorus-nitrogen FRs (P-N FRs), especially in high moisture environments. Compared to polyurethane foam from commercial polyol (c-PUF), r-PUF is notably more thermally stable and efficient in terms of flame retardancy, even without adding FRs.

View Article and Find Full Text PDF

Bis(2-aminoethyl)terephthalamide, an amide-containing diamine, was obtained from the aminolysis of waste poly(ethylene terephthalate) bottles. This diamine reacts with various aromatic dianhydrides to form novel polyamideimides (PAIs). The formation of amic acid or ammonium carboxylate salt intermediates depends strongly on the substituents of the dianhydrides.

View Article and Find Full Text PDF

A novel nitrogen-phosphorus flame retardant (P-N FR) based on phosphonamidate, dimethyl ,'-1,3-phenylenebis(P-methylphosphonamidate) (DMPMP), was successfully synthesized and its flame-retarding performances and thermal degradation were compared with those of other P-N FRs and a phosphorus-based FR such as resorcinol bis(diphenyl phosphate) (RDP). DMPMP was applied to acrylonitrile-butadiene-styrene (ABS) and ethylene-vinyl acetate (EVA) to investigate the factors governing the flame-retarding behaviors of P-N FRs which would make them efficient for noncharrable polymers. V-0 ratings were achieved at 20 wt % loading of DMPMP for ABS and at a much lesser amount of DMPMP loading (10 wt %) for EVA.

View Article and Find Full Text PDF

The thermal stabilities, flame retardancies, and physico-mechanical properties of rice husk-reinforced polyurethane (PU-RH) foams with and without flame retardants (FRs) were evaluated. Their flammability performances were studied by UL94, LOI, and cone calorimetry tests. The obtained results combined with FTIR, TGA, SEM, and XPS characterizations were used to evaluate the fire behaviors of the PU-RH samples.

View Article and Find Full Text PDF

Functional hybrid materials were successfully synthesized from low-cost waste products, such as oligochitosan (OCS) obtained from chitosan (one of the main components in crab shells) and nanosilica (nSiO₂) obtained from rice husk, in a 1:1 ratio (/), and their dispersion in the presence of carboxymethyl cellulose at pH 7 was stable for over one month without aggregation. The molecular weights, chemical structures, morphologies, and crystallinities of the obtained materials were characterized by GPC, FTIR, TEM, and XRD, respectively. The antifungal effects of OCS, nSiO₂, and the OCS/nSiO hybrid materials were investigated via a disk-diffusion method.

View Article and Find Full Text PDF

Rigid polyurethane foam (PUF) was successfully prepared from a novel oligo-ester-ether-diol obtained from the glycolysis of waste poly(ethylene terephthalate) (PET) bottles via reaction with diethylene glycol (DEG) in the presence of ZnSO₄·7H₂O. The LC-MS analysis of the oligodiol enabled us to identify 67 chemical homologous structures that were composed of zero to four terephthalate (T) ester units and two to twelve monoethylene glycol (M) ether units. The flame retardant, morphological, compression, and thermal properties of rigid PUFs with and without triphenyl phosphate (TPP) were determined.

View Article and Find Full Text PDF