Publications by authors named "Dong Ling Li"

Article Synopsis
  • Systemic lupus erythematosus (SLE) is an autoimmune disease where the body produces autoantibodies, leading to various symptoms, including issues with the digestive system.
  • Patients with digestive involvement may have unusual symptoms that can make diagnosis and treatment challenging, risking serious health complications.
  • The review discusses the causes, symptoms, diagnosis, and treatment options for gastrointestinal issues associated with SLE, emphasizing the need for careful monitoring by healthcare professionals.
View Article and Find Full Text PDF

High salt (HS) consumption is a risk factor for multiple autoimmune disorders via disturbing immune homeostasis. Nevertheless, the exact mechanisms by which HS exacerbates rheumatoid arthritis (RA) pathogenesis remain poorly defined. Herein, we found that heightened phosphorylation of PDPK1 and SGK1 upon HS exposure attenuated FoxO1 expression to enhance the glycolytic capacity of CD4 T cells, resulting in strengthened Th17 but compromised Treg program.

View Article and Find Full Text PDF

Dysregulated T cell activation underpins the immunopathology of rheumatoid arthritis (RA), yet the machineries that orchestrate T cell effector program remain incompletely understood. Herein, we leveraged bulk and single-cell RNA sequencing data from RA patients and validated protein disulfide isomerase family A member 3 (PDIA3) as a potential therapeutic target. PDIA3 is remarkably upregulated in pathogenic CD4 T cells derived from RA patients and positively correlates with C-reactive protein level and disease activity score 28.

View Article and Find Full Text PDF

APOBEC3A (A3A) is a cytidine deaminase with critical roles in molecular diagnostics. Herein, we demonstrate the enzymatic DNA repairing amplification-powered construction of an Au nanoparticle-based nanosensor for single-molecule monitoring of A3A activity in cancer cells. Target A3A can convert cytosine (C) in substrate probe to uracil (U), and then the template binds with substrate probe to form a dsDNA containing U/A base pairs.

View Article and Find Full Text PDF

Telomerase is an important biomarker for early diagnosis of cancers, but current telomerase assays usually rely on measuring the extension products of telomerase substrates, which increases the assay complexity. More evidence indicates that human telomerase RNA (hTR), as a core component of telomerase, is positively correlated with the telomerase activity. Herein, we demonstrate the development of a duplex-specific nuclease (DSN)-propelled 3D quantum dot (QD) nanoassembly with two-step Föster resonance energy transfer (FRET) for the one-step sensing of hTR in breast cancer cells and tissues.

View Article and Find Full Text PDF

Oxidative DNA damage is closely associated with the occurrence of numerous human diseases and cancers. 8-Oxo-7,8-dihydroguanine (8-oxoG) is the most prevalent form of DNA damage, and it has become not only an oxidative stress biomarker but also a new epigenetic-like biomarker. However, few approaches are available for the locus-specific detection of 8-oxoG because of the low abundance of 8-oxoG damage in DNA and the limited sensitivity of existing assays.

View Article and Find Full Text PDF

DNA-modifying enzymes act as critical regulators in a wide range of genetic functions (e.g., DNA damage & repair, DNA replication), and their aberrant expression may interfere with regular genetic functions and induce various malignant diseases including cancers.

View Article and Find Full Text PDF

O-Methylguanine-DNA-methyltransferase (MGMT) is a demethylation protein that dynamically regulates the O-methylguanine modification (O MeG), and dysregulated MGMT is implicated in various malignant tumors. Herein, we integrate demethylation-activated DNAzyme with a single quantum dot nanosensor to sensitively detect MGMT in breast tissues. The presence of MGMT induces the demethylation of the O MeG-caged DNAzyme and the restoration of catalytic activity.

View Article and Find Full Text PDF

Telomerase is a basic reverse transcriptase that maintains the telomere length in cells, and accurate and specific sensing of telomerase in living cells is critical for medical diagnostics and disease therapeutics. Herein, we demonstrate for the first time the construction of an enzymatically controlled DNA nanomachine with endogenous apurinic/apyrimidinic endonuclease 1 (APE1) as a driving force for one-step imaging of telomerase in living cells. The DNA nanomachine is designed by rational engineering of substrate probes and reporter probes embedded with an enzyme-activatable site (i.

View Article and Find Full Text PDF

We construct a simple fluorescent biosensor for single-molecule counting of flap endonuclease 1 (FEN1) based on ligase detection reaction (LDR) amplification-activated CRISPR-Cas12a. This biosensor exhibits excellent selectivity and high sensitivity with a detection limit (LOD) of 1.31 × 10 U.

View Article and Find Full Text PDF

Accurate and sensitive analysis of circulating tumor cells (CTCs) in human blood provides a non-invasive approach for the evaluation of cancer metastasis and early cancer diagnosis. Herein, we demonstrate the controllable assembly of a quantum dot (QD)-based aptasensor guided by CRISPR/Cas12a for direct measurement of CTCs in human blood. We introduce a magnetic bead@activator/recognizer duplex core-shell structure to construct a multifunctional platform for the capture and direct detection of CTCs in human blood, without the need for additional CTC release and re-identification steps.

View Article and Find Full Text PDF

Methylation is one of the most prevalent epigenetic modifications in natural organisms, and the processes of methylation and demethylation are closely associated with cell growth, differentiation, gene transcription and expression. Abnormal methylation may lead to various human diseases including cancers. Simultaneous analysis of multiple DNA demethylases remains a huge challenge due to the requirement of diverse substrate probes and scarcity of proper signal transduction strategies.

View Article and Find Full Text PDF

Diabetic foot ulcer (DFU) complications involve autophagy dysregulation. This study aimed to identify autophagy-related bioindicators in DFU. Differentially expressed genes (DEGs) between DFU and healthy samples were analysed from the Gene Expression Omnibus (GEO) datasets, GSE7014 and GSE29221.

View Article and Find Full Text PDF

Intracerebral hemorrhage (ICH), which has high mortality and disability rate is associated with microglial pyroptosis and neuroinflammation, and the effective treatment methods are limited Epigallocatechin-3-gallate (EGCG) has been found to play a cytoprotective role by regulating the anti-inflammatory response to pyroptosis in other systemic diseases. However, the role of EGCG in microglial pyroptosis and neuroinflammation after ICH remains unclear. In this study, we investigated the effects of EGCG pretreatment on neuroinflammation-mediated neuronal pyroptosis and the underlying neuroprotective mechanisms in experimental ICH.

View Article and Find Full Text PDF

Background: Metastatic skin cancers are relatively rare dermatological malignancies. They usually present as nodules, erythematous lesions, scar-like lesions or other lesion types. Signet-ring cell carcinoma (SRCC) is an uncommon histological type of gastric cancer that usually behaves aggressively and has a poor prognosis.

View Article and Find Full Text PDF

Objective: Primary Sjogren's syndrome (pSS) is a systemic autoimmune disease that mainly affects the exocrine gland, especially in women. Currently, the results of studies on the menstruation or fertility of pSS patients remain controversial. This study aimed to examine the menstrual and reproductive characteristics of pSS patients.

View Article and Find Full Text PDF

N6-methyladenosine modification as an mRNA modification in mammalian cells is dynamically reversible, regulated by RNA demethylase [e.g., fat mass and obesity-associated protein (FTO)].

View Article and Find Full Text PDF

Argonaute 2 (Ago2) is an essential component of the RNA-induced silencing complex (RISC) and it participates in diverse physiological processes, while dysregulation of Ago2 activity is closely linked to a variety of human diseases including cancers. The reported Ago2 assays often suffer from laborious procedures, complicated reaction schemes, and unsatisfactory sensitivity. Herein, we develop a new gold nanoparticle (AuNP)-based single-molecule biosensor for simple and sensitive detection of Ago2 activity.

View Article and Find Full Text PDF

5-Hydroxymethylcytosine (5hmC) modification is a key epigenetic regulator of cellular processes in mammalian cells, and its misregulation may lead to various diseases. Herein, we develop a hydroxymethylation-specific ligation-mediated single quantum dot (QD)-based fluorescence resonance energy transfer (FRET) nanosensor for sensitive quantification of 5hmC modification in cancer cells. We design a Cy5-modified signal probe and a biotinylated capture probe for the recognition of specific 5hmC-containing genes.

View Article and Find Full Text PDF

A type III polyketide synthase (SfuPKS1) from the edible seaweed was molecularly cloned and biochemically characterized. The recombinant SfuPKS1 catalyzed the condensation of fatty acyl-CoA with two or three malonyl-CoA using lactone-type intramolecular cyclization to produce tri- and/or tetraketides. Moreover, it can also utilize phenylpropanoyl-CoA to synthesize phloroglucinol derivatives through Claisen-type cyclization, exhibiting broad substrate and catalysis specificity.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) play key roles in the post-transcriptional regulation of genes, and their aberrant expression may disturb the normal gene regulation network to induce various diseases, and thus accurate detection of miRNAs is essential to early clinical diagnosis. Herein, we develop for the first time a single-quantum dot (QD)-based Förster resonance energy transfer (FRET) nanosensor to accurately detect miRNAs based on copper-free and enzyme-free cycling click chemistry-mediated tricyclic ligase chain reaction (LCR) amplification. We design four DNA probes namely DNA probes 1-4, with DNA probes 1 and 3 being modified with azide (N) and DNA probes 2 and 4 being modified with dibenzocyclooctyne (DBCO).

View Article and Find Full Text PDF

The disruption of gut microbes is associated with diabetic cardiomyopathy, but the mechanism by which gut microbes affect cardiac damage remains unclear. We explored gut microbes and branched-chain amino acid (BCAA) metabolite catabolism in diabetic cardiomyopathy mice and investigated the cardioprotective effect of pyridostigmine. The experiments were conducted using a model of diabetic cardiomyopathy induced by a high-fat diet + streptozotocin in C57BL/6 mice.

View Article and Find Full Text PDF

Lour is a perennial herb in the family of Stemonaceae. It is commonly used as traditional medicine in China. Here, we assembled and annotated the complete chloroplast genome of .

View Article and Find Full Text PDF

(Wall.) Royle is a medicinal plant of commercial value. In the present study, we assembled the complete chloroplast genome of .

View Article and Find Full Text PDF

Background: Secukinumab demonstrated sustained efficacy in patients with ankylosing spondylitis (AS) through 5 years in pivotal Phase III studies. Here, we present efficacy and safety results (52-week) of secukinumab in patients with AS from the MEASURE 5 study.

Methods: MEASURE 5 was a 52-week, Phase III, China-centric study.

View Article and Find Full Text PDF