We theoretically demonstrate chiral propagation of plasmon polaritons and show that it is more efficient and easier to control than the recently observed chiral shear phonon polaritons. We consider plasmon polaritons created in an anisotropic two-dimensional (2D) material twisted with respect to an anisotropic substrate to best exploit the competition between anisotropic electron-electron interactions and the anisotropic electronic structure of the host material. Gate voltage and twist angle are then used for precise control of the chiral plasmon polaritons, overcoming the existing restrictions with chiral phonon polaritons.
View Article and Find Full Text PDFObjectives: To summarise the surgical outcomes in patients with cardiogenic shock supported by preoperative extracorporeal membrane oxygenation (ECMO).
Methods: Between May 2012 and August 2017, eight patients with cardiogenic shock, who were supported by ECMO, underwent emergency surgery; four of them had isolated coronary artery bypass grafting, three had coronary artery bypass grafting with mitral replacement, and one had mitral valve replacement with left ventricular posterior wall repair.
Results: All eight patients were successfully weaned off from ECMO after their surgeries.
Recently, NbOF (NOF) semiconductor has been intensively studied owing to its excellent ultraviolet activity, good thermal stability and low carrier recombination. In this work, we report a five-step technique to synthesize hollow carbon spheres (HCSs)/NOF hybrids. Activating the surface of HCSs by creating oxyfluorinated functionalization can easily trigger an interaction between oxyfluorinated HCSs and NOF intermediates, finally resulting in the formation of HCSs/NOF hybrids.
View Article and Find Full Text PDFHeterostructured photocatalysis is a significant issue owing to the unique band alignment, improved spectrum absorption, and enhanced photocatalytic activity. However, the construction of uniform, controllable, and effective heterojunctions is still a huge challenge. Herein, NaNbO /Nb O F heterojunctions are fabricated through an in situ corrosion technique for the first time.
View Article and Find Full Text PDFNovel trivalent europium (Eu)-doped niobium oxyfluoride (NbOF) nanomaterials with retarded carrier recombination and enhanced photocatalytic activity were successfully synthesized by a facile hydrothermal method. Through changing the doping ratio of Eu ions, the phase, composition, morphology, absorption spectra and photocatalytic properties were investigated in detail. The results showed that Eu ions were successfully incorporated into the interstitial sites of NbOF crystal lattice.
View Article and Find Full Text PDFTerahertz plasmon emission is the key to getting terahertz radiation, which has resulted in numerous studies on it. In this paper, we present the results of a theoretical investigation of terahertz plasmon emission by drifting electrons in a grated graphene system driven by an electric field by applying the Boltzmann's equilibrium equation method. The results show that plasmon frequencies from terahertz to infrared are generated by drifting electrons through the interaction between plasmons and electrons.
View Article and Find Full Text PDFTungsten borides are a unique class of compounds with excellent mechanical properties comparable to those of traditional superhard materials. However, the in-depth understanding of these compounds is hindered by the uncertainty of their phase relations and complex crystal structures. Here, we explored the W-B system systematically by ab initio variable-composition evolutionary simulations at pressures from 0 to 40 GPa.
View Article and Find Full Text PDFA two-phase-coexistence technique offers intriguing variables to maneuver novel and enhanced functionality in a single-component material. Most importantly, new band alignment and perfect interfaces between two phases can strongly affect local photoelectronic properties. However, previous efforts to achieve two-phase coexistence were mainly restricted to specific systems and methods.
View Article and Find Full Text PDFWe present an investigation on carbon quantum dots (CQDs) synthesized from wastewater induced during the production of tofu. We find that tofu wastewater is a good source of raw material in making fluorescent CQDs. The corresponding CQDs can be fabricated simply via hydrothermal reaction to carbonize the organic matter in the yellow serofluid of tofu wastewater.
View Article and Find Full Text PDF