Publications by authors named "Dong Fan"

Limited efficacy and severe side effects often result in suboptimal outcomes to solid tumor therapies. In contrast, the reduced side effects and potential long-term benefits of tumor immunotherapy offer promise, notwithstanding the challenges of variable patient responses and immune-related adverse events hindering its widespread application. Recent advances in mRNA technology have revolutionized cancer immunotherapy.

View Article and Find Full Text PDF

Accurately detecting low concentrations of ethyl acetate (EA) holds promise for the early screening of rectal and gastric cancer. The primary challenges lie in achieving a high response at parts per billion level concentration and ensuring high selectivity. This study focuses on designing Fe-Ce-O bimetallic oxides with doping and heterogeneous interfaces, which exhibit outstanding redox properties and highly enhanced ability of the adsorption and activation of both O and EA molecules.

View Article and Find Full Text PDF

Supramolecular nanoreactor as artificial mimetic enzyme is attracting a growing interest due to fine-tuned cavity and host-guest molecular recognition. Here, we design three 3d-4f metallo-supramolecular nanocages with different cavity sizes and active sites (ZnErL, ZnErL, and ZnErL) based on a "bimetallic cluster cutting" strategy. Three nanocages exhibit a differential catalysis for the three-component aza-Darzens reaction without another additive, and only ZnErL with the largest cavity and the most lanthanides centers has excellent catalytic conversion for monosubstituted and disubstituted N-aryl aziridine products.

View Article and Find Full Text PDF

The key challenge in oxidizing NO using photocatalysis is controlling the selectivity of products to avoid the generation of toxic byproducts like NO. Here, we propose regulating the generation of reactive oxygen species by constructing Type-II heterojunctions to facilitate the deep oxidation of NO to nitrates. Experimental characterization and Density functional theory (DFT) simulations demonstrate that the outstanding photocatalytic activity of heterojunction materials stems from their superior charge separation efficiency and stronger adsorption capacity for NO and O molecules, promoting the formation of reactive oxygen species.

View Article and Find Full Text PDF

Trastuzumab serves as a cornerstone of first-line therapy for HER2-positive (HER2) breast cancer; however, a significant challenge arises due to the emergence of resistance within approximately one year of commencement of treatment, particularly in advanced cases with metastatic disease where its efficacy is limited. Our investigation into the tumor tissue from HER2 breast cancer patients, employing single-cell sequencing and bioinformatics analysis, has elucidated a crucial mechanism underlying the reduced responsiveness of tumors to trastuzumab: the diminished infiltration and activity of natural killer (NK) cells within the tumor microenvironment (TME). To counteract this impediment, we meticulously selected two potent immune-modulating peptides TKD and IP-10p, which are known to recruit and enhance the activity of NK cells.

View Article and Find Full Text PDF

Elucidation of the dynamic evolution of active sites is still a challenge in investigating the catalytic mechanism mainly due to the difficulty in accurately detecting the transient structural changes of active sites under operating conditions. Here, we develop an advanced in situ electron paramagnetic resonance (EPR) spectroscopy, which could sensitively monitor and visualize the dynamic evolution of paramagnetic active sites during photoreduction CO. In situ results reveal that the photoactivated Cu sites from CuO nanoclusters/TiO serve as the authentic active sites in the reaction and exhibit self-regenerative capability.

View Article and Find Full Text PDF

The COVID-19 pandemic, driven by the novel coronavirus SARS-CoV-2, has drastically reshaped global health and socioeconomic landscapes. The papain-like protease (PLpro) plays a critical role in viral polyprotein cleavage and immune evasion, making it a prime target for therapeutic intervention. Numerous compounds have been identified as inhibitors of SARS-CoV-2 PLpro, with many characterized through crystallographic studies.

View Article and Find Full Text PDF

Carbon emissions lead to an increased greenhouse gas concentration, which, in turn, affects air quality by altering the global climate. Despite its importance, the direct relationship between carbon emissions and the atmospheric reactive nitrogen cycle has been poorly understood. This study provides an in-depth investigation of the effects of CO on the photochemical transformation of nitrates on mineral dust.

View Article and Find Full Text PDF

The electrocatalytic two-electron oxygen reduction reaction (2e-ORR) represents one of the most prospective avenues for the synthesis of hydrogen peroxide (HO). However, the four-electron competition reaction constrains the efficiency of HO synthesis. Therefore, there is an urgent need to develop superior catalysts to facilitate the HO synthesis.

View Article and Find Full Text PDF

Brain network dynamics have been extensively explored in patients with subjective cognitive decline (SCD). However, these studies are susceptible to individual differences, scanning parameters, and other confounding factors. Therefore, how to reveal subtle SCD-related subtle changes remains unclear.

View Article and Find Full Text PDF

Surface defect engineering has been regarded as an appealing strategy to improve photocatalytic performance, but defects are susceptible to inactivation and thus lose their function as active sites. In this study, we successfully tailored and identified the dynamic evolution of surface hydroxyl defects over ZnTi-layered double hydroxide (ZnTi-LDH) photocatalyst. The enrichment of surface hydroxyl electrons and the dynamic circulation of hydroxyl defects result in enhanced separation and transport capabilities of photogenerated carriers, thereby ensuring the perpetual activation of small molecules into •O and •OH.

View Article and Find Full Text PDF

Outer membrane vesicles (OMVs) are double-layered structures of nanoscale lipids released by gram-negative bacteria. They have the same membrane composition and characteristics as primitive cells, which enables them to penetrate cells and tissues efficiently. These OMVs exhibit excellent membrane stability, immunogenicity, safety, and permeability (which makes it easier for them to penetrate into tumour tissue), making them suitable for developing cancer vaccines and drug delivery systems.

View Article and Find Full Text PDF

Mn ions doped CsPbCl perovskite nanocrystals (NCs) exhibit superiority of spin-associated optical and electrical properties. However, precisely controlling the doping concentration, doping location, and the mono-distribution of Mn ions in the large-micro-size CsPbCl perovskite host is a formidable challenge. Here, the micro size CsPbCl perovskite crystals (MCs) are reported with uniform Mn ions doping by self-assembly of Mn ions doped CsPbCl perovskite NCs.

View Article and Find Full Text PDF

Solar-driven CO photoreduction holds promise for sustainable fuel and chemical productions, but the complex proton-coupled multi-electron transfer processes and sluggish oxidation half-reaction kinetics substantially hinder its efficiency. Here, we devised a rational catalyst design to address these challenges by fabricating ferrocene carboxylic acid-functionalized CsSbBr nanocrystals (CSB-Fc NCs), which facilitate simultaneous benzyl alcohol oxidation and CO reduction reactions under visible-light irradiation. The synchronized proton-coupled electron transfer processes between the reduction and oxidation half-reactions on CSB-Fc NCs resulted in a 5-fold increase in the CO reduction rate (45.

View Article and Find Full Text PDF

Heterojunctions, known for their decent separation of photo-generated electrons and holes, are promising for photocatalytic CO reduction. However, a significant obstacle in traditional post-assembled heterojunctions is the high interfacial barrier for charge transfer caused by atomic lattice mismatch at multiphase interfaces. Here, as research prototypes, the study creates a lattice-matched co-atomic interface within CsPbBr-CsPbBr polytypic nanocrystals (113-125 PNs) through the proposed in situ hybrid strategy to elucidate the underlying charge transfer mechanism within this unique interface.

View Article and Find Full Text PDF

As primary air pollutants from fossil fuel combustion, the excess emission of nitric oxides (NO) results in a series of atmospheric environmental issues. Although the selective catalytic reduction technology has been confirmed to be effective for NO removal, green purification and value-added conversion of NO under ambient conditions are still facing great challenges, especially for nitrogen resource recovery. To address that, photo-/electrocatalysis technology offers sustainable routes for efficient NO purification and upcycling under ambient temperature and pressure, which has received considerable attention from scientific communities.

View Article and Find Full Text PDF

CDK4/6i, the first-line drug for treating ERα-positive breast cancer, significantly improves clinical outcomes. However, CDK4/6i resistance often develops and remains a major hurdle, and the underlying mechanisms remain challenging to fully investigate. Here, we used Genome-wide CRISPR/Cas9 library screening combined with single-cell sequencing to screen for molecules mediating CDK4/6i resistance and identified METTL14 as a determinant of CDK4/6i sensitivity.

View Article and Find Full Text PDF

Photocatalytic technology provides a new approach for the harmless treatment of low concentration NO in the atmosphere. The development of high-performance semiconductor materials to improve the light absorption efficiency and the separation efficiency of photogenerated carriers is the focus of the research. Bismuth oxybismuth sulfate (BiOSO) shows significant potential for photocatalytic NO purification due to its unique electronic and layered structure.

View Article and Find Full Text PDF

1-Methylnaphthalene is a critical component for constructing fuel surrogates of diesel and aviation kerosene. However, the reaction pathways of 1-methylnaphthalene included in existing detailed chemical kinetic models vary from each other, leading to discrepancies in the simulation of ignition and oxidation processes. In the present study, reaction classes and pathways involved in the combustion of 1-methylnaphthalene were analyzed, and effects of rate constants of reactions related to 1-methylnaphthalene and its significant intermediates on ignition delay times and species concentration profiles were discussed, involving hydrogen abstraction and substitution reactions of 1-methylnaphthalene, oxidation, isomerization, and addition reactions of 1-naphthylmethyl, hydrogen abstraction and oxidation reactions of indene, as well as the oxidation of indenyl and naphthalene.

View Article and Find Full Text PDF

Realizing air-processed blue halide perovskite films with tailored emission is significant for promoting the commercialization of perovskite light-emitting diodes (PeLEDs). However, the intrinsically inferior thermodynamic stability and laborious crystallization kinetics control under humidity interference limit the fabrication of blue perovskite emitters in ambient air. Here, air-processed pure-bromide quasi-2D blue perovskite films are achieved with stabilized lattice and tunable emission by interstitial doping of trivalent metallic cations.

View Article and Find Full Text PDF

The core-shell structure often exhibits unique properties, resulting in superior physical and chemical performance distinct from individual component in the field of photocatalysis. However, traditional prepared methods such as template synthesis and layer-by-layer self-assembly are relatively complex. Therefore, it is necessary to explore an efficient and expedient approach.

View Article and Find Full Text PDF
Article Synopsis
  • * Two types of analyses (two-sample and multivariate Mendelian randomization) were conducted to determine if there's a causal relationship between these factors and MM.
  • * The findings showed no strong causal link between lipid levels, adipokines, and the risk of MM, but suggested the potential for a weak association, indicating that more research is needed to explore the underlying mechanisms.
View Article and Find Full Text PDF

Detecting hydrogen sulfide (HS) odor gas in the environment at parts-per-billion-level concentrations is crucial. However, a significant challenge is the rapid deactivation caused by SO deposition. To address this issue, we developed a sensing material comprising FeO-decorated WO nanowires (FWO) with strong interfacial interaction.

View Article and Find Full Text PDF
Article Synopsis
  • - Gfi1 is a crucial transcriptional repressor involved in blood cell development, mainly working through its SNAG domain to recruit the histone demethylase LSD1, affecting gene regulation.
  • - The study reveals Gfi1's ability to enhance the expression of the Hemgn gene via a specific promoter region, with interactions from transcription factors like Ikaros (which activates Hemgn) and PU.1 (which represses it).
  • - Gfi1's upregulation of Hemgn not only occurs through repression of PU.1 but also contributes to Gfi1's protective role against cell death caused by stress, independent of the p53 protein.
View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session7am5s94vbfp2ian6o0g865mm5td83qdp): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once