Publications by authors named "Dong Bok Lee"

Nitrided and oxynitrided coatings that formed on alloy (c.p.-Ti), near- alloy (Ti-2.

View Article and Find Full Text PDF

Nanomultilayered TiAlCrSiN film was corroded in N2/0.1%H2S-mixed gas at 900 °C for 5-300 h. It corroded to TiO2, α-Al2O3, and Cr2O3.

View Article and Find Full Text PDF

Films and strands consisting of polycarbonate (PC) containing 0.55 or 0.75 wt% multiwall carbon nanotubes (MWNTs) were synthesized through solvent casting and melt extrusion methods, respectively.

View Article and Find Full Text PDF

Composites of Ti3SiC2-(10, 20, 40)wt% La0.8Sr0.2CrO3 were synthesized by hot pressing powders of Ti3SiC2 and La0.

View Article and Find Full Text PDF

The effect of adding Al2O3 nano-filler (5 and 10 vol%) to two different alkali/alkaline-earth borosilicate glass sealants, particularly on the viscosity and electrical characteristics of the glass composite sealants, was investigated to improve the cyclic sealing performance. The effects of the filler and base glass composition on the viscosities, electrical conductivities, and phase transformations of the sealants were investigated. The glass viscosity was decreased by replacing 20 mol% SrO with alkali and zirconium oxide in a base alkaline-earth glass.

View Article and Find Full Text PDF

Nano-multilayered TiAlSiN films with a composition of 26Ti-16.3Al-1.2Si-56.

View Article and Find Full Text PDF

The objective of this study was to investigate the effect of heat treatments on the viscosities and electrical conductivities of glass sealants to be used in solid oxide fuel cells. Glass-based sealants, both with and without an alumina nanopowder added as a nanofiller, were heat treated at temperatures ranging from 750 degrees C to 770 degrees C for periods of up to 240 h. The effects of heat treatments on the viscosities, electrical conductivities and phase transformations of the sealants were investigated.

View Article and Find Full Text PDF

The corrosion behavior of Ti3SiC2 carbides was studied at 800 and 900 degrees C for 30 and 100 h in a gas mixture containing 0.9448 atm of N2, 0.031 atm of H2O, and 0.

View Article and Find Full Text PDF

Alkali/alkaline-earth borosilicate glass-alumina composites containing 10 vol% Al2O3 were prepared for use as solid oxide fuel cell sealants. The effect of heat treatment and Al2O3, addition on the viscosities and electrical conductivities was investigated to improve cyclic sealing performance. Upon a 48-h heat treatment, the viscosity of the glass-alumina composites at 750 degrees C was approximately four orders of magnitude higher than that of the base glass owing to the crystallization of the glass in the presence of Al2O3.

View Article and Find Full Text PDF

Thin ZrO2/Al2O3 films that consisted of alternating monoclinic ZrO2 nanolayers and amorphous Al2O3 nanolayers were deposited on a tool steel substrate using Zr and Al cathodes in a cathodic arc plasma deposition system, and then oxidized at 600-900 degrees C in air for up to 50 h. The ZrO2/Al2O3 films effectively suppressed the oxidation of the substrate up to 800 degrees C by acting as a barrier layer against the outward diffusion of the substrate elements and inward diffusion of oxygen. However, rapid oxidation occurred at 900 degrees C due mainly to the increased diffusion and subsequent oxidation of steel as well as the crystallization of amorphous Al2O3.

View Article and Find Full Text PDF

The ordered L1₂-type Al₃Ti-(8, 10, 15)% Cr intermetallic compounds, namely, Al₆₇Ti₂₅Cr₈, Al₆₆Ti₂₄Cr₁₀, and Al₅₉Ti₂₆Cr₁₅, were prepared by induction melting followed by thermomechanical treatment. Their microstructure, compositional variation, and crystal structure were characterized using X-ray diffraction, optical microscopy, and scanning and transmission electron microscopy equipped with energy-dispersive spectroscopy. The Al₆₇Ti₂₅Cr₈ alloy consisted of the L1₂-Al₃Ti matrix and precipitates of α₂-Ti₃Al, D0₂₂-Al₃Ti, and γ-TiAl.

View Article and Find Full Text PDF

This study compares the viscosity and strength of three glass-based seals prepared with or without nano or micron-sized alumina powder used as filler material. Measurements of the viscosity and bending strength of the glass-based seals showed that addition of the nano-sized alumina powder to the glass increased both the high-temperature viscosity and the strength of the sintered glass matrix. Strength tests and observations of the microstructure of the fracture surface of the seal samples confirmed the strengthening of the glass network structure.

View Article and Find Full Text PDF

Blurred frames may happen sparsely in a video sequence acquired by consumer devices such as digital camcorders and digital cameras. In order to avoid visually annoying artifacts due to those blurred frames, this paper presents a novel motion deblurring algorithm in which a blurred frame can be reconstructed utilizing the high-resolution information of adjacent unblurred frames. First, a motion-compensated predictor for the blurred frame is derived from its neighboring unblurred frame via specific motion estimation.

View Article and Find Full Text PDF

Ti-6Al-4V alloys consisting of α-Ti grains and intergranular β-Ti islands were nitrided at 850°C for 1 to 12 h under a nitrogen pressure of 1 Pa. With increasing nitriding time, the Ti-N compound layer became thicker, and the α-Ti diffusion zone containing dissolved nitrogen became wider. In the Ti-N compound layer, the initially formed Ti2N became TiN as the nitriding progressed.

View Article and Find Full Text PDF

Several kinds of nano-sized silica-based thermal insulation were prepared by dry processing of mixtures consisting of fumed silica, ceramic fiber, and a SiC opacifier. Infiltration of phenolic resin solution into the insulation, followed by hot-pressing, was attempted to improve the mechanical strength of the insulation. More than 22% resin content was necessary to increase the strength of the insulation by a factor of two or more.

View Article and Find Full Text PDF

Microporous thermal insulations were prepared from mixtures of nano-sized fumed silica, micron-sized fibers and opacifier particles. Those micron-sized particles were dry coated with nano-sized fumed silica particles by mechanical process using a compressive-shear type mill. The effect of nanoparticle coating on the thermal conductivity of the insulation media was investigated using a hot-wire method.

View Article and Find Full Text PDF

High-purity, dense nano-laminated (Cr0.95Ti0.05)2AlC compounds were synthesized via a powder metallurgical route.

View Article and Find Full Text PDF

Nano-multilayered WC-CrN films were deposited onto steel substrates by an arc ion plating method. The oxidation characteristics of the films were studied at 700 and 800 degrees C for up to 60 h in air. In each case, during oxidation, carbon and nitrogen escaped from the film into the air, while oxygen from the air diffused into the film.

View Article and Find Full Text PDF