Publications by authors named "Donella Rovai"

Ferritins are ubiquitous and conserved proteins endowed with enzymatic ferroxidase activity, that oxidize Fe(II) ions at the dimetal ferroxidase centre to form a mineralized Fe(III) oxide core deposited within the apo-protein shell. Herein, the in vitro formation of a heterodimetal cofactor constituted by Fe and Mn ions has been investigated in human H ferritin (hHFt). Namely, Mn and Fe binding at the hHFt ferroxidase centre and its effects on Fe(II) oxidation have been investigated by UV-Vis ferroxidation kinetics, fluorimetric titrations, multifrequency EPR, and preliminary Mössbauer spectroscopy.

View Article and Find Full Text PDF

The magnetic properties of some single molecule magnets (SMM) on surfaces can be strongly modified by the molecular packing in nanometric films/aggregates or by interactions with the substrate, which affect the molecular orientation and geometry. Detailed investigations of the magnetism of thin SMM films and nanostructures are necessary for the development of spin-based molecular devices, however this task is challenged by the limited sensitivity of laboratory-based magnetometric techniques and often requires access to synchrotron light sources to perform surface sensitive X-ray magnetic circular dichroism (XMCD) investigations. Here we show that low-temperature magnetic force microscopy is an alternative powerful laboratory tool able to extract the field dependence of the magnetization and to identify areas of in-plane and perpendicular magnetic anisotropy in microarrays of the SMM terbium(III) bis-phthalocyaninato (TbPc) neutral complex grown as nanosized films on SiO and perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), and this is in agreement with data extracted from nonlocal XMCD measurements performed on homogeneous TbPc/PTCDA films.

View Article and Find Full Text PDF

Cantilever torque magnetometry is used to elucidate the orientation of magnetic molecules in thin films. The technique allows depth-resolved investigations by intercalating a layer of anisotropic magnetic molecules in a film of its isotropic analogues. The proof-of-concept is here demonstrated with the single-molecule magnet TbPc2 evidencing also an exceptional long-range templating effect on substrates coated by the organic molecule perylene-3,4,9,10-tetracarboxylic dianhydride.

View Article and Find Full Text PDF

The successful thin-film deposition of a pyrene-substituted nitronyl nitroxide radical under controlled conditions has been demonstrated. The electronic properties, chemical environment at the interface, and morphology of the thin films have been investigated by a multitechnique approach. Spectroscopic and morphological analyses indicate a Stranski-Krastanov growth mode and weak physisorption of molecules onto the metallic surface.

View Article and Find Full Text PDF