Publications by authors named "Donega C"

This study focuses on the development of environmentally friendly Au-CuS/CuInS heteronanotrimers. The chosen strategy relies on the laser photodeposition of a single gold nanodot (ND) onto Janus Cu S/CuInS heteronanocrystals (HNCs). This method offers precise control over the number, location, and size (5 to 8 nm) of the Au NDs by adjusting laser power for the career production, concentration of hole scavenger for charge equilibration in redox reactions, and gold precursor concentration, and exposure time for the final ND size.

View Article and Find Full Text PDF

Interprofessional education is a key driver for patient-centered care. Interprofessionality in healthcare encourages team engagement and commitment, resulting in better outcomes and adherence to treatment. The present study aimed to use the adapted Readiness for Interprofessional Learning Scale (RIPLS) to analyze and correlate receptiveness to interprofessional education among Brazilian undergraduate students, to improve educational strategies.

View Article and Find Full Text PDF

Lanthanide ions are promising for the labeling of silica nanoparticles with a specific luminescent fingerprint due to their sharp line emission at characteristic wavelengths. With the increasing use of silica nanoparticles in consumer products, it is important to label silica nanoparticles in order to trace the biodistribution, both in the environment and living organisms.In this work, we synthesized LaPO4 nanocrystals (NCs) with sizes ranging from 4 to 8 nm doped with europium or cerium and terbium.

View Article and Find Full Text PDF

Samples for single-emitter spectroscopy are usually prepared by spin-coating a dilute solution of emitters on a microscope cover slip of silicate based glass (such as quartz). Here, we show that both borosilicate glass and quartz contain intrinsic defect colour centres that fluoresce when excited at 532 nm. In a microscope image the defect emission is indistinguishable from spin-coated emitters.

View Article and Find Full Text PDF

The direct synthesis of heteronanocrystals (HNCs) combining different ternary semiconductors is challenging and has not yet been successful. Here, we report a sequential topotactic cation exchange (CE) pathway that yields CuInSe2/CuInS2 dot core/rod shell nanorods with near-infrared luminescence. In our approach, the Cu(+) extraction rate is coupled to the In(3+) incorporation rate by the use of a stoichiometric trioctylphosphine-InCl3 complex, which fulfills the roles of both In-source and Cu-extracting agent.

View Article and Find Full Text PDF

We report a study of Zn(2+) by Cd(2+) cation exchange (CE) in colloidal ZnSe nanocrystals (NCs). Our results reveal that CE in ZnSe NCs is a thermally activated isotropic process. The CE efficiency (i.

View Article and Find Full Text PDF

Thermal quenching of quantum dot (QD) luminescence is important for application in luminescent devices. Systematic studies of the quenching behavior above 300 K are, however, lacking. Here, high-temperature (300-500 K) luminescence studies are reported for highly efficient CdSe core-shell quantum dots (QDs), aimed at obtaining insight into temperature quenching of QD emission.

View Article and Find Full Text PDF

We report on the gradual evolution of the conductivity of spherical CdTe nanocrystals of increasing size from the regime of strong quantum confinement with truly discrete energy levels to the regime of weak confinement with closely spaced hole states. We use the high-frequency (terahertz) real and imaginary conductivities of optically injected carriers in the nanocrystals to report on the degree of quantum confinement. For the smaller CdTe nanocrystals (3 nm < radius < 5 nm), the complex terahertz conductivity is purely imaginary.

View Article and Find Full Text PDF

Quantum dot micelles (pQDs) with a paramagnetic coating are promising nanoparticles for bimodal molecular imaging. Their bright fluorescence allows for optical detection, while their Gd payload enables visualization with contrast-enhanced MRI. A popular approach in molecular MRI is the targeting of abundantly expressed cell surface receptors.

View Article and Find Full Text PDF

The exchange kinetics of native ligands that passivate CdSe quantum dots (hexadecylamine (HDA), trioctylphosphine oxide (TOPO), and trioctylphosphine (TOP)) by thiols is followed in situ. This is realized by measuring, in real-time, the decrease in emission intensity of the QDs upon addition of hexanethiol (HT) which quenches the emission. The effect of adding an excess of native ligands prior to thiol addition on the capping exchange is studied to provide insight in the bond strength and exchange kinetics of the individual surfactants.

View Article and Find Full Text PDF

Luminescent solar concentrators (LSCs) generally consist of transparent polymer sheets doped with luminescent species. Incident sunlight is absorbed by the luminescent species and emitted with high quantum efficiency, such that emitted light is trapped in the sheet and travels to the edges where it can be collected by solar cells. LSCs offer potentially lower cost per Wp.

View Article and Find Full Text PDF

In this work we present the preparation of highly luminescent anisotropic CdTe/CdSe colloidal heteronanocrystals. The reaction conditions used (low temperature, slow precursor addition, and surfactant composition) resulted in a tunable shape from prolate to branched CdTe/CdSe nanocrystals. Upon CdSe shell growth the heteronanocrystals show a gradual evolution from type-I to type-II optical behavior.

View Article and Find Full Text PDF